/* Copyright (c) 2015, Matthias Schiffer All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "Chunk.hpp" #include "../Resource/BlockType.hpp" #include #include #include #include #include namespace MinedMap { namespace World { Chunk::Chunk(Buffer buffer) { size_t size = buffer.get32(); Buffer buffer2(buffer.get(size), size); uint8_t format = buffer2.get8(); if (format != 2) throw std::invalid_argument("unknown chunk format"); inflateChunk(buffer2); parseChunk(); analyzeChunk(); } void Chunk::inflateChunk(Buffer buffer) { size_t outlen = 0; uint8_t *output = nullptr; z_stream stream = {}; int ret = inflateInit(&stream); if (ret != Z_OK) throw std::runtime_error("inflateInit() failed"); stream.avail_in = buffer.getRemaining(); stream.next_in = const_cast(buffer.get(stream.avail_in)); while (stream.avail_in) { outlen += 65536; output = static_cast(std::realloc(output, outlen)); stream.next_out = output + stream.total_out; stream.avail_out = outlen - stream.total_out; ret = inflate(&stream, Z_NO_FLUSH); switch (ret) { case Z_NEED_DICT: case Z_DATA_ERROR: case Z_MEM_ERROR: inflateEnd(&stream); throw std::runtime_error("inflate() failed"); } } inflateEnd(&stream); len = stream.total_out; data = UniqueCPtr(output); } void Chunk::parseChunk() { Buffer nbt(data.get(), len); std::pair> tag = NBT::Tag::readNamedTag(&nbt); if (tag.first != "") throw std::invalid_argument("invalid root tag"); root = assertValue(std::dynamic_pointer_cast(tag.second)); level = assertValue(root->get("Level")); } void Chunk::analyzeChunk() { std::shared_ptr lightPopulatedTag = level->get("LightPopulated"); if (!lightPopulatedTag && lightPopulatedTag->getValue()) throw std::invalid_argument("light data missing"); sections = assertValue(level->get>("Sections")); maxY = (assertValue(sections->back()->get("Y"))->getValue() + 1) * SIZE; std::shared_ptr biomeTag = assertValue(level->get("Biomes")); if (biomeTag->getLength() != SIZE*SIZE) throw std::invalid_argument("corrupt biome data"); biomes = biomeTag->getValue(); blockIDs.reset(new uint8_t[maxY * SIZE * SIZE]); blockData.reset(new uint8_t[maxY * SIZE * SIZE / 2]); blockSkyLight.reset(new uint8_t[maxY * SIZE * SIZE / 2]); blockBlockLight.reset(new uint8_t[maxY * SIZE * SIZE / 2]); std::memset(blockSkyLight.get(), 0xff, maxY * SIZE * SIZE / 2); for (auto §ion : *sections) { std::shared_ptr blocks = assertValue(section->get("Blocks")); std::shared_ptr data = assertValue(section->get("Data")); std::shared_ptr blockLight = assertValue(section->get("BlockLight")); std::shared_ptr skyLight = assertValue(section->get("SkyLight")); size_t Y = assertValue(section->get("Y"))->getValue(); if (blocks->getLength() != SIZE*SIZE*SIZE || data->getLength() != SIZE*SIZE*SIZE/2 || blockLight->getLength() != SIZE*SIZE*SIZE/2 || skyLight->getLength() != SIZE*SIZE*SIZE/2) throw std::invalid_argument("corrupt chunk data"); std::memcpy(blockIDs.get() + Y*SIZE*SIZE*SIZE, blocks->getValue(), SIZE*SIZE*SIZE); std::memcpy(blockData.get() + Y*SIZE*SIZE*SIZE/2, data->getValue(), SIZE*SIZE*SIZE/2); std::memcpy(blockBlockLight.get() + Y*SIZE*SIZE*SIZE/2, blockLight->getValue(), SIZE*SIZE*SIZE/2); std::memcpy(blockSkyLight.get() + Y*SIZE*SIZE*SIZE/2, skyLight->getValue(), SIZE*SIZE*SIZE/2); } } Block Chunk::getBlock(size_t x, size_t y, size_t z) const { size_t y2 = y; if (y2 < maxY-1) y2++; unsigned h; for (h = y; h > 0; h--) { uint8_t id2 = getBlockAt(x, h, z); if (id2 != 8 && id2 != 9) break; } return Block( getBlockAt(x, y, z), getDataAt(x, y, z), h, getBlockLightAt(x, y2, z), getSkyLightAt(x, y2, z), getBiomeAt(x, z) ); } Chunk::Blocks Chunk::getTopLayer() const { size_t done = 0; Blocks ret; for (ssize_t y = maxY-1; y >= 0; y--) { if (done == SIZE*SIZE) break; for (size_t z = 0; z < SIZE; z++) { for (size_t x = 0; x < SIZE; x++) { if (ret.blocks[x][z].id) continue; uint8_t id = getBlockAt(x, y, z); if (!Resource::BLOCK_TYPES[id].opaque) continue; ret.blocks[x][z] = getBlock(x, y, z); done++; } } } return ret; } } }