summaryrefslogtreecommitdiffstats
path: root/Charliplexing.c
blob: 13cb248f42e14e8eba0c66cbf203de324a7ab8d6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*
  Charliplexing.cpp - Using timer2 with 1ms resolution

  Alex Wenger <a.wenger@gmx.de> http://arduinobuch.wordpress.com/
  Matt Mets <mahto@cibomahto.com> http://cibomahto.com/

  Timer init code from MsTimer2 - Javier Valencia <javiervalencia80@gmail.com>
  Misc functions from Benjamin Sonnatg <benjamin@sonntag.fr>

  History:
    2009-12-30 - V0.0 wrote the first version at 26C3/Berlin
    2010-01-01 - V0.1 adding misc utility functions
      (Clear, Vertical,  Horizontal) comment are Doxygen complaints now
    2010-05-27 - V0.2 add double-buffer mode
    2010-08-18 - V0.9 Merge brightness and grayscale

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General Public
  License along with this library; if not, write to the Free Software
  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
*/

#include <math.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "Charliplexing.h"

volatile unsigned int LedSign_tcnt2;


typedef struct _videoPage {
    uint8_t pixels[SHADES][48];  // TODO: is 48 right?
} videoPage;

/* -----------------------------------------------------------------  */
/** Table for the LED multiplexing cycles
 * Each frame is made of 24 bytes (for the 24 display cycles)
 * There are SHADES frames per buffer in grayscale mode (one for each brigtness)
 * and twice that many to support double-buffered grayscale.
 */
videoPage leds[2];

/// Determines whether the display is in single or double buffer mode
uint8_t displayMode = SINGLE_BUFFER;

/// Flag indicating that the display page should be flipped as soon as the
/// current frame is displayed
volatile bool videoFlipPage = false;

/// Pointer to the buffer that is currently being displayed
videoPage* displayBuffer;

/// Pointer to the buffer that should currently be drawn to
videoPage* workBuffer;

/// Flag indicating that the timer buffer should be flipped as soon as the
/// current frame is displayed
volatile bool videoFlipTimer = false;


// Timer counts to display each page for, plus off time
typedef struct timerInfo {
    uint8_t counts[SHADES];
    uint8_t prescaler[SHADES];
} timerInfo;

// Double buffer the timing information, of course.
timerInfo* frontTimer;
timerInfo* backTimer;

timerInfo* tempTimer;

timerInfo timer[2];

// Record a slow and fast prescaler for later use
typedef struct prescalerInfo {
    uint8_t relativeSpeed;
    uint8_t TCCR2;
} prescalerInfo;

// TODO: Generate these based on processor type and clock speed
prescalerInfo slowPrescaler = {1, 0x03};
//prescalerInfo fastPrescaler = {32, 0x01};
prescalerInfo fastPrescaler = {4, 0x02};

static bool initialized = false;

/// Uncomment to set analog pin 5 high during interrupts, so that an
/// oscilloscope can be used to measure the processor time taken by it
//#define MEASURE_ISR_TIME
//#ifdef MEASURE_ISR_TIME
//uint8_t statusPIN = 19;
//#endif

typedef struct LEDPosition {
    uint8_t high;
    uint8_t low;
} LEDPosition;


/* -----------------------------------------------------------------  */
/** Table for LED Position in leds[] ram table
 */

const LEDPosition ledMap[126] = {
    {13, 5}, {13, 6}, {13, 7}, {13, 8}, {13, 9}, {13,10}, {13,11}, {13,12},
    {13, 4}, { 4,13}, {13, 3}, { 3,13}, {13, 2}, { 2,13},
    {12, 5}, {12, 6}, {12, 7}, {12, 8}, {12, 9}, {12,10}, {12,11}, {12,13},
    {12, 4}, { 4,12}, {12, 3}, { 3,12}, {12, 2}, { 2,12},
    {11, 5}, {11, 6}, {11, 7}, {11, 8}, {11, 9}, {11,10}, {11,12}, {11,13},
    {11, 4}, { 4,11}, {11, 3}, { 3,11}, {11, 2}, { 2,11},
    {10, 5}, {10, 6}, {10, 7}, {10, 8}, {10, 9}, {10,11}, {10,12}, {10,13},
    {10, 4}, { 4,10}, {10, 3}, { 3,10}, {10, 2}, { 2,10},
    { 9, 5}, { 9, 6}, { 9, 7}, { 9, 8}, { 9,10}, { 9,11}, { 9,12}, { 9,13},
    { 9, 4}, { 4, 9}, { 9, 3}, { 3, 9}, { 9, 2}, { 2, 9},
    { 8, 5}, { 8, 6}, { 8, 7}, { 8, 9}, { 8,10}, { 8,11}, { 8,12}, { 8,13},
    { 8, 4}, { 4, 8}, { 8, 3}, { 3, 8}, { 8, 2}, { 2, 8},
    { 7, 5}, { 7, 6}, { 7, 8}, { 7, 9}, { 7,10}, { 7,11}, { 7,12}, { 7,13},
    { 7, 4}, { 4, 7}, { 7, 3}, { 3, 7}, { 7, 2}, { 2, 7},
    { 6, 5}, { 6, 7}, { 6, 8}, { 6, 9}, { 6,10}, { 6,11}, { 6,12}, { 6,13},
    { 6, 4}, { 4, 6}, { 6, 3}, { 3, 6}, { 6, 2}, { 2, 6},
    { 5, 6}, { 5, 7}, { 5, 8}, { 5, 9}, { 5,10}, { 5,11}, { 5,12}, { 5,13},
    { 5, 4}, { 4, 5}, { 5, 3}, { 3, 5}, { 5, 2}, { 2, 5},
};


/* -----------------------------------------------------------------  */
/** Constructor : Initialize the interrupt code.
 * should be called in setup();
 */
void LedSignInit(uint8_t mode)
{
//#ifdef MEASURE_ISR_TIME
//    pinMode(statusPIN, OUTPUT);
//    digitalWrite(statusPIN, LOW);
//#endif

	float prescaler = 0.0;

#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || (__AVR_ATmega1280__)
	TIMSK2 &= ~(1<<TOIE2);
	TCCR2A &= ~((1<<WGM21) | (1<<WGM20));
	TCCR2B &= ~(1<<WGM22);
	ASSR &= ~(1<<AS2);
	TIMSK2 &= ~(1<<OCIE2A);

	if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) {	// prescaler set to 64
		TCCR2B |= ((1<<CS21) | (1<<CS20));
		TCCR2B &= ~(1<<CS22);
		prescaler = 32.0;
	} else if (F_CPU < 1000000UL) {	// prescaler set to 8
		TCCR2B |= (1<<CS21);
		TCCR2B &= ~((1<<CS22) | (1<<CS20));
		prescaler = 8.0;
	} else { // F_CPU > 16Mhz, prescaler set to 128
		TCCR2B |= (1<<CS22);
		TCCR2B &= ~((1<<CS21) | (1<<CS20));
		prescaler = 64.0;
	}
#elif defined (__AVR_ATmega8__)
	TIMSK &= ~(1<<TOIE2);
	TCCR2 &= ~((1<<WGM21) | (1<<WGM20));
	TIMSK &= ~(1<<OCIE2);
	ASSR &= ~(1<<AS2);

	if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) {	// prescaler set to 64
		TCCR2 |= (1<<CS22);
		TCCR2 &= ~((1<<CS21) | (1<<CS20));
		prescaler = 64.0;
	} else if (F_CPU < 1000000UL) {	// prescaler set to 8
		TCCR2 |= (1<<CS21);
		TCCR2 &= ~((1<<CS22) | (1<<CS20));
		prescaler = 8.0;
	} else { // F_CPU > 16Mhz, prescaler set to 128
		TCCR2 |= ((1<<CS22) && (1<<CS20));
		TCCR2 &= ~(1<<CS21);
		prescaler = 128.0;
	}
#elif defined (__AVR_ATmega128__)
	TIMSK &= ~(1<<TOIE2);
	TCCR2 &= ~((1<<WGM21) | (1<<WGM20));
	TIMSK &= ~(1<<OCIE2);

	if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) {	// prescaler set to 64
		TCCR2 |= ((1<<CS21) | (1<<CS20));
		TCCR2 &= ~(1<<CS22);
		prescaler = 64.0;
	} else if (F_CPU < 1000000UL) {	// prescaler set to 8
		TCCR2 |= (1<<CS21);
		TCCR2 &= ~((1<<CS22) | (1<<CS20));
		prescaler = 8.0;
	} else { // F_CPU > 16Mhz, prescaler set to 256
		TCCR2 |= (1<<CS22);
		TCCR2 &= ~((1<<CS21) | (1<<CS20));
		prescaler = 256.0;
	}
#endif

	LedSign_tcnt2 = 256 - (int)((float)F_CPU * 0.0005 / prescaler);

    // Record whether we are in single or double buffer mode
    displayMode = mode;
    videoFlipPage = false;

    // Point the display buffer to the first physical buffer
    displayBuffer = &leds[0];

    // If we are in single buffered mode, point the work buffer
    // at the same physical buffer as the display buffer.  Otherwise,
    // point it at the second physical buffer.
    if( displayMode & DOUBLE_BUFFER ) {
        workBuffer = &leds[1];
    }
    else {
        workBuffer = displayBuffer;
    }

    // Set up the timer buffering
    frontTimer = &timer[0];
    backTimer = &timer[1];

    videoFlipTimer = false;
    LedSignSetBrightness(127);

    // Clear the buffer and display it
    LedSignClear(0);
    LedSignFlip(false);

    // Then start the display
	TCNT2 = LedSign_tcnt2;
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || (__AVR_ATmega1280__)
	TIMSK2 |= (1<<TOIE2);
#elif defined (__AVR_ATmega128__) || defined (__AVR_ATmega8__)
	TIMSK |= (1<<TOIE2);
#endif

    // If we are in double-buffer mode, wait until the display flips before we
    // return
    if (displayMode & DOUBLE_BUFFER)
    {
        while (videoFlipPage) {
            _delay_ms(1);
        }
    }

    initialized = true;
}


/* -----------------------------------------------------------------  */
/** Signal that the front and back buffers should be flipped
 * @param blocking if true : wait for flip before returning, if false :
 *                 return immediately.
 */
void LedSignFlip(bool blocking)
{
    if (displayMode & DOUBLE_BUFFER)
    {
        // Just set the flip flag, the buffer will flip between redraws
        videoFlipPage = true;

        // If we are blocking, sit here until the page flips.
        while (blocking && videoFlipPage) {
            _delay_ms(1);
        }
    }
}


/* -----------------------------------------------------------------  */
/** Clear the screen completely
 * @param set if 1 : make all led ON, if not set or 0 : make all led OFF
 */
void LedSignClear(int set) {
    int x, y;
    for(x=0;x<14;x++)
        for(y=0;y<9;y++)
            LedSignSet(x,y,set);
}


/* -----------------------------------------------------------------  */
/** Clear an horizontal line completely
 * @param y is the y coordinate of the line to clear/light [0-8]
 * @param set if 1 : make all led ON, if not set or 0 : make all led OFF
 */
void LedSignHorizontal(int y, int set) {
    int x;
    for(x=0;x<14;x++)
        LedSignSet(x,y,set);
}


/* -----------------------------------------------------------------  */
/** Clear a vertical line completely
 * @param x is the x coordinate of the line to clear/light [0-13]
 * @param set if 1 : make all led ON, if not set or 0 : make all led OFF
 */
void LedSignVertical(int x, int set) {
    int y;
    for(y=0;y<9;y++)
        LedSignSet(x,y,set);
}


/* -----------------------------------------------------------------  */
/** Set : switch on and off the leds. All the position #for char in frameString:
 * calculations are done here, so we don't need to do in the
 * interrupt code
 */
void LedSignSet(uint8_t x, uint8_t y, uint8_t c)
{
    uint8_t pin_high = ledMap[x+y*14].high;
    uint8_t pin_low  = ledMap[x+y*14].low;
    // pin_low is directly the address in the led array (minus 2 because the
    // first two bytes are used for RS232 communication), but
    // as it is a two byte array we need to check pin_high also.
    // If pin_high is bigger than 8 address has to be increased by one

    uint8_t bufferNum = (pin_low-2)*2 + (pin_high / 8) + ((pin_high > 7)?24:0);
    uint8_t work = _BV(pin_high & 0x07);

    // If we aren't in grayscale mode, just map any pin brightness to max
    if (c > 0 && !(displayMode & GRAYSCALE)) {
        c = SHADES-1;
    }

    int i;
    for (i = 0; i < SHADES-1; i++) {
        if( c > i ) {
            workBuffer->pixels[i][bufferNum] |= work;   // ON
        }
        else {
            workBuffer->pixels[i][bufferNum] &= ~work;   // OFF
        }
    }
}


/* Set the overall brightness of the screen
 * @param brightness LED brightness, from 0 (off) to 127 (full on)
 */

void LedSignSetBrightness(uint8_t brightness)
{
    // An exponential fit seems to approximate a (perceived) linear scale
    float brightnessPercent = ((float)brightness / 127)*((float)brightness / 127);
    uint8_t difference = 0;

    /*   ---- This needs review! Please review. -- thilo  */
    // set up page counts
    // TODO: make SHADES a function parameter. This would require some refactoring.
    int start = 15;
    int max = 255;
    float scale = 1.5;
    float delta = pow( max - start , 1.0 / scale) / (SHADES - 1);
    uint8_t pageCounts[SHADES];

    pageCounts[0] = max - start;
    uint8_t i;
    for (i=1; i<SHADES; i++) {
        pageCounts[i] = max - ( pow( i * delta, scale ) + start );
    }
    //Serial.end();

    if (! initialized) {
       // set front timer defaults
        int i;
        for (i = 0; i < SHADES; i++) {
            frontTimer->counts[i] = pageCounts[i];
            // TODO: Generate this dynamically
            frontTimer->prescaler[i] = slowPrescaler.TCCR2;
        }
    }

    // Wait until the previous brightness request goes through
    while( videoFlipTimer ) {
        _delay_ms(1);
    }

    // Compute on time for each of the pages
    // Use the fast timer; slow timer is only useful for < 3 shades.
    for (i = 0; i < SHADES - 1; i++) {
        uint8_t interval = 255 - pageCounts[i];

        backTimer->counts[i] = 255 -    brightnessPercent
                                      * interval
                                      * fastPrescaler.relativeSpeed;
        backTimer->prescaler[i] = fastPrescaler.TCCR2;
        difference += backTimer->counts[i] - pageCounts[i];
    }

    // Compute off time
    backTimer->counts[SHADES - 1] = 255 - difference;
    backTimer->prescaler[SHADES - 1] = slowPrescaler.TCCR2;

    /*   ---- End of "This needs review! Please review." -- thilo  */

    // Have the ISR update the timer registers next run
    videoFlipTimer = true;
}


/* -----------------------------------------------------------------  */
/** The Interrupt code goes here !
 */
ISR(TIMER2_OVF_vect) {
        DDRD  = 0x0;
        DDRB  = 0x0;
	//#ifdef MEASURE_ISR_TIME
	//    digitalWrite(statusPIN, HIGH);
	//#endif

    // For each cycle, we have potential SHADES pages to display.
    // Once every page has been displayed, then we move on to the next
    // cycle.

    // 24 Cycles of Matrix
    static uint8_t cycle = 0;

    // SHADES pages to display
    static uint8_t page = 0;

    TCCR2B = frontTimer->prescaler[page];
    TCNT2 = frontTimer->counts[page];

    if ( page < SHADES - 1) {

        if (cycle < 6) {
            DDRD  = _BV(cycle+2) | displayBuffer->pixels[page][cycle*2];
            PORTD =            displayBuffer->pixels[page][cycle*2];

            DDRB  =            displayBuffer->pixels[page][cycle*2+1];
            PORTB =            displayBuffer->pixels[page][cycle*2+1];
        } else if (cycle < 12) {
            DDRD =             displayBuffer->pixels[page][cycle*2];
            PORTD =            displayBuffer->pixels[page][cycle*2];

            DDRB  = _BV(cycle-6) | displayBuffer->pixels[page][cycle*2+1];
            PORTB =            displayBuffer->pixels[page][cycle*2+1];
        } else if (cycle < 18) {
            DDRD  = _BV(cycle+2-12) | displayBuffer->pixels[page][cycle*2];
            PORTD =            displayBuffer->pixels[page][cycle*2];

            DDRB  =            displayBuffer->pixels[page][cycle*2+1];
            PORTB =            displayBuffer->pixels[page][cycle*2+1];
        } else {
            DDRD =             displayBuffer->pixels[page][cycle*2];
            PORTD =            displayBuffer->pixels[page][cycle*2];

            DDRB  = _BV(cycle-6-12) | displayBuffer->pixels[page][cycle*2+1];
            PORTB =            displayBuffer->pixels[page][cycle*2+1];
        }
    }
    else {
        // Turn everything off
        DDRD  = 0x0;
        DDRB  = 0x0;
    }

    page++;

    if (page >= SHADES) {
        page = 0;
        cycle++;
    }

    if (cycle > 24) {
        cycle = 0;

        // If the page should be flipped, do it here.
        if (videoFlipPage && (displayMode & DOUBLE_BUFFER))
        {
            // TODO: is this an atomic operation?
            videoFlipPage = false;

            videoPage* temp = displayBuffer;
            displayBuffer = workBuffer;
            workBuffer = temp;
        }

        if (videoFlipTimer) {
            videoFlipTimer = false;

            tempTimer = frontTimer;
            frontTimer = backTimer;
            backTimer = tempTimer;
        }
    }

    //#ifdef MEASURE_ISR_TIME
    //    digitalWrite(statusPIN, LOW);
    //#endif
}