/* * BIRD -- The Border Gateway Protocol * * (c) 2000 Martin Mares * * Can be freely distributed and used under the terms of the GNU GPL. */ /** * DOC: Border Gateway Protocol * * The BGP protocol is implemented in three parts: |bgp.c| which takes care of the * connection and most of the interface with BIRD core, |packets.c| handling * both incoming and outgoing BGP packets and |attrs.c| containing functions for * manipulation with BGP attribute lists. * * As opposed to the other existing routing daemons, BIRD has a sophisticated core * architecture which is able to keep all the information needed by BGP in the * primary routing table, therefore no complex data structures like a central * BGP table are needed. This increases memory footprint of a BGP router with * many connections, but not too much and, which is more important, it makes * BGP much easier to implement. * * Each instance of BGP (corresponding to a single BGP peer) is described by a &bgp_proto * structure to which are attached individual connections represented by &bgp_connection * (usually, there exists only one connection, but during BGP session setup, there * can be more of them). The connections are handled according to the BGP state machine * defined in the RFC with all the timers and all the parameters configurable. * * In incoming direction, we listen on the connection's socket and each time we receive * some input, we pass it to bgp_rx(). It decodes packet headers and the markers and * passes complete packets to bgp_rx_packet() which distributes the packet according * to its type. * * In outgoing direction, we gather all the routing updates and sort them to buckets * (&bgp_bucket) according to their attributes (we keep a hash table for fast comparison * of &rta's and a &fib which helps us to find if we already have another route for * the same destination queued for sending, so that we can replace it with the new one * immediately instead of sending both updates). There also exists a special bucket holding * all the route withdrawals which cannot be queued anywhere else as they don't have any * attributes. If we have any packet to send (due to either new routes or the connection * tracking code wanting to send a Open, Keepalive or Notification message), we call * bgp_schedule_packet() which sets the corresponding bit in a @packet_to_send * bit field in &bgp_conn and as soon as the transmit socket buffer becomes empty, * we call bgp_fire_tx(). It inspects state of all the packet type bits and calls * the corresponding bgp_create_xx() functions, eventually rescheduling the same packet * type if we have more data of the same type to send. * * The processing of attributes consists of two functions: bgp_decode_attrs() for checking * of the attribute blocks and translating them to the language of BIRD's extended attributes * and bgp_encode_attrs() which does the converse. Both functions are built around a * @bgp_attr_table array describing all important characteristics of all known attributes. * Unknown transitive attributes are attached to the route as %EAF_TYPE_OPAQUE byte streams. */ #undef LOCAL_DEBUG #include "nest/bird.h" #include "nest/iface.h" #include "nest/protocol.h" #include "nest/route.h" #include "nest/locks.h" #include "conf/conf.h" #include "lib/socket.h" #include "lib/resource.h" #include "lib/string.h" #include "bgp.h" struct linpool *bgp_linpool; /* Global temporary pool */ static sock *bgp_listen_sk; /* Global listening socket */ static int bgp_counter; /* Number of protocol instances using the listening socket */ static char *bgp_state_names[] = { "Idle", "Connect", "Active", "OpenSent", "OpenConfirm", "Established" }; static void bgp_connect(struct bgp_proto *p); static void bgp_initiate(struct bgp_proto *p); static void bgp_setup_listen_sk(void); static void bgp_close(struct bgp_proto *p) { ASSERT(bgp_counter); bgp_counter--; if (p->cf->password) sk_set_md5_auth(bgp_listen_sk, p->cf->remote_ip, NULL); if (!bgp_counter) { rfree(bgp_listen_sk); bgp_listen_sk = NULL; rfree(bgp_linpool); bgp_linpool = NULL; } } /** * bgp_start_timer - start a BGP timer * @t: timer * @value: time to fire (0 to disable the timer) * * This functions calls tm_start() on @t with time @value and the * amount of randomization suggested by the BGP standard. Please use * it for all BGP timers. */ void bgp_start_timer(timer *t, int value) { if (value) { /* The randomization procedure is specified in RFC 1771: 9.2.3.3 */ t->randomize = value / 4; tm_start(t, value - t->randomize); } else tm_stop(t); } /** * bgp_close_conn - close a BGP connection * @conn: connection to close * * This function takes a connection described by the &bgp_conn structure, * closes its socket and frees all resources associated with it. * * If the connection is being closed due to a protocol error, adjust * the connection restart timer as well according to the error recovery * policy set in the configuration. * * If the connection was marked as primary, it shuts down the protocol as well. */ void bgp_close_conn(struct bgp_conn *conn) { struct bgp_proto *p = conn->bgp; struct bgp_config *cf = p->cf; DBG("BGP: Closing connection\n"); conn->packets_to_send = 0; rfree(conn->connect_retry_timer); conn->connect_retry_timer = NULL; rfree(conn->keepalive_timer); conn->keepalive_timer = NULL; rfree(conn->hold_timer); conn->hold_timer = NULL; rfree(conn->sk); conn->sk = NULL; conn->state = BS_IDLE; if (conn->error_flag > 1) { if (cf->disable_after_error) p->p.disabled = 1; if (p->last_connect && (bird_clock_t)(p->last_connect + cf->error_amnesia_time) < now) p->startup_delay = 0; if (!p->startup_delay) p->startup_delay = cf->error_delay_time_min; else { p->startup_delay *= 2; if (p->startup_delay > cf->error_delay_time_max) p->startup_delay = cf->error_delay_time_max; } } if (conn->primary) { bgp_close(p); p->conn = NULL; proto_notify_state(&p->p, PS_DOWN); } else if (conn->error_flag > 1) bgp_initiate(p); } static int bgp_graceful_close_conn(struct bgp_conn *c) { switch (c->state) { case BS_IDLE: return 0; case BS_CONNECT: case BS_ACTIVE: bgp_close_conn(c); return 1; case BS_OPENSENT: case BS_OPENCONFIRM: case BS_ESTABLISHED: bgp_error(c, 6, 0, NULL, 0); return 1; default: bug("bgp_graceful_close_conn: Unknown state %d", c->state); } } static void bgp_send_open(struct bgp_conn *conn) { DBG("BGP: Sending open\n"); conn->sk->rx_hook = bgp_rx; conn->sk->tx_hook = bgp_tx; tm_stop(conn->connect_retry_timer); bgp_schedule_packet(conn, PKT_OPEN); conn->state = BS_OPENSENT; bgp_start_timer(conn->hold_timer, conn->bgp->cf->initial_hold_time); } static void bgp_connected(sock *sk) { struct bgp_conn *conn = sk->data; struct bgp_proto *p = conn->bgp; BGP_TRACE(D_EVENTS, "Connected"); bgp_send_open(conn); } static void bgp_connect_timeout(timer *t) { struct bgp_conn *conn = t->data; struct bgp_proto *p = conn->bgp; DBG("BGP: connect_timeout\n"); bgp_close_conn(conn); bgp_connect(p); } static void bgp_sock_err(sock *sk, int err) { struct bgp_conn *conn = sk->data; struct bgp_proto *p = conn->bgp; if (err) BGP_TRACE(D_EVENTS, "Connection lost (%M)", err); else BGP_TRACE(D_EVENTS, "Connection closed"); switch (conn->state) { case BS_CONNECT: case BS_OPENSENT: rfree(conn->sk); conn->sk = NULL; conn->state = BS_ACTIVE; bgp_start_timer(conn->connect_retry_timer, p->cf->connect_retry_time); break; case BS_OPENCONFIRM: case BS_ESTABLISHED: bgp_close_conn(conn); break; default: bug("bgp_sock_err called in invalid state %d", conn->state); } } static void bgp_hold_timeout(timer *t) { struct bgp_conn *conn = t->data; DBG("BGP: Hold timeout, closing connection\n"); bgp_error(conn, 4, 0, NULL, 0); } static void bgp_keepalive_timeout(timer *t) { struct bgp_conn *conn = t->data; DBG("BGP: Keepalive timer\n"); bgp_schedule_packet(conn, PKT_KEEPALIVE); } static void bgp_setup_conn(struct bgp_proto *p, struct bgp_conn *conn) { timer *t; conn->sk = NULL; conn->bgp = p; conn->packets_to_send = 0; conn->error_flag = 0; conn->primary = 0; t = conn->connect_retry_timer = tm_new(p->p.pool); t->hook = bgp_connect_timeout; t->data = conn; t = conn->hold_timer = tm_new(p->p.pool); t->hook = bgp_hold_timeout; t->data = conn; t = conn->keepalive_timer = tm_new(p->p.pool); t->hook = bgp_keepalive_timeout; t->data = conn; } static void bgp_setup_sk(struct bgp_proto *p, struct bgp_conn *conn, sock *s) { s->data = conn; s->err_hook = bgp_sock_err; conn->sk = s; } /** * bgp_connect - initiate an outgoing connection * @p: BGP instance * * The bgp_connect() function creates a new &bgp_conn and initiates * a TCP connection to the peer. The rest of connection setup is governed * by the BGP state machine as described in the standard. */ static void bgp_connect(struct bgp_proto *p) /* Enter Connect state and start establishing connection */ { sock *s; struct bgp_conn *conn = &p->outgoing_conn; DBG("BGP: Connecting\n"); p->last_connect = now; s = sk_new(p->p.pool); s->type = SK_TCP_ACTIVE; if (ipa_nonzero(p->cf->source_addr)) s->saddr = p->cf->source_addr; else s->saddr = p->local_addr; s->daddr = p->cf->remote_ip; s->dport = BGP_PORT; s->ttl = p->cf->multihop ? : 1; s->rbsize = BGP_RX_BUFFER_SIZE; s->tbsize = BGP_TX_BUFFER_SIZE; s->tos = IP_PREC_INTERNET_CONTROL; s->password = p->cf->password; s->tx_hook = bgp_connected; BGP_TRACE(D_EVENTS, "Connecting to %I from local address %I", s->daddr, s->saddr); bgp_setup_conn(p, conn); bgp_setup_sk(p, conn, s); conn->state = BS_CONNECT; if (sk_open(s)) { bgp_sock_err(s, 0); return; } DBG("BGP: Waiting for connect success\n"); bgp_start_timer(conn->connect_retry_timer, p->cf->connect_retry_time); } static void bgp_initiate(struct bgp_proto *p) { unsigned delay; delay = p->cf->start_delay_time; if (p->startup_delay > delay) delay = p->startup_delay; if (delay) { BGP_TRACE(D_EVENTS, "Connect delayed by %d seconds", delay); bgp_setup_conn(p, &p->outgoing_conn); bgp_start_timer(p->outgoing_conn.connect_retry_timer, delay); } else bgp_connect(p); } /** * bgp_incoming_connection - handle an incoming connection * @sk: TCP socket * @dummy: unused * * This function serves as a socket hook for accepting of new BGP * connections. It searches a BGP instance corresponding to the peer * which has connected and if such an instance exists, it creates a * &bgp_conn structure, attaches it to the instance and either sends * an Open message or (if there already is an active connection) it * closes the new connection by sending a Notification message. */ static int bgp_incoming_connection(sock *sk, int dummy UNUSED) { struct proto_config *pc; int match = 0; DBG("BGP: Incoming connection from %I port %d\n", sk->daddr, sk->dport); WALK_LIST(pc, config->protos) if (pc->protocol == &proto_bgp && pc->proto) { struct bgp_proto *p = (struct bgp_proto *) pc->proto; if (ipa_equal(p->cf->remote_ip, sk->daddr)) { match = 1; if ((p->p.proto_state == PS_START || p->p.proto_state == PS_UP) && p->neigh && p->neigh->iface) { BGP_TRACE(D_EVENTS, "Incoming connection from %I port %d", sk->daddr, sk->dport); if (p->incoming_conn.sk) { DBG("BGP: But one incoming connection already exists, how is that possible?\n"); break; } bgp_setup_conn(p, &p->incoming_conn); bgp_setup_sk(p, &p->incoming_conn, sk); sk_set_ttl(sk, p->cf->multihop ? : 1); bgp_send_open(&p->incoming_conn); return 0; } } } if (!match) log(L_AUTH "BGP: Unauthorized connect from %I port %d", sk->daddr, sk->dport); rfree(sk); return 0; } static void bgp_setup_listen_sk(void) { if (!bgp_listen_sk) { sock *s = sk_new(&root_pool); DBG("BGP: Creating incoming socket\n"); s->type = SK_TCP_PASSIVE; s->sport = BGP_PORT; s->tos = IP_PREC_INTERNET_CONTROL; s->rbsize = BGP_RX_BUFFER_SIZE; s->tbsize = BGP_TX_BUFFER_SIZE; s->rx_hook = bgp_incoming_connection; if (sk_open(s)) { log(L_ERR "Unable to open incoming BGP socket"); rfree(s); } else bgp_listen_sk = s; } } static void bgp_start_neighbor(struct bgp_proto *p) { p->local_addr = p->neigh->iface->addr->ip; DBG("BGP: local=%I remote=%I\n", p->local_addr, p->next_hop); #ifdef IPV6 { struct ifa *a; p->local_link = ipa_or(ipa_build(0xfe80,0,0,0), ipa_and(p->local_addr, ipa_build(0,0,~0,~0))); WALK_LIST(a, p->neigh->iface->addrs) if (a->scope == SCOPE_LINK) { p->local_link = a->ip; break; } DBG("BGP: Selected link-level address %I\n", p->local_link); } #endif bgp_initiate(p); } static void bgp_neigh_notify(neighbor *n) { struct bgp_proto *p = (struct bgp_proto *) n->proto; if (n->iface) { BGP_TRACE(D_EVENTS, "Neighbor found"); bgp_start_neighbor(p); } else { BGP_TRACE(D_EVENTS, "Neighbor lost"); /* Send cease packets, but don't wait for them to be delivered */ bgp_graceful_close_conn(&p->outgoing_conn); bgp_graceful_close_conn(&p->incoming_conn); proto_notify_state(&p->p, PS_DOWN); } } static void bgp_start_locked(struct object_lock *lock) { struct bgp_proto *p = lock->data; struct bgp_config *cf = p->cf; DBG("BGP: Got lock\n"); p->local_id = cf->c.global->router_id; p->next_hop = cf->multihop ? cf->multihop_via : cf->remote_ip; p->neigh = neigh_find(&p->p, &p->next_hop, NEF_STICKY); if (cf->rr_client) { p->rr_cluster_id = cf->rr_cluster_id ? cf->rr_cluster_id : p->local_id; p->rr_client = cf->rr_client; } p->rs_client = cf->rs_client; if (!p->neigh) { log(L_ERR "%s: Invalid next hop %I", p->p.name, p->next_hop); p->p.disabled = 1; proto_notify_state(&p->p, PS_DOWN); } else if (p->neigh->iface) bgp_start_neighbor(p); else BGP_TRACE(D_EVENTS, "Waiting for %I to become my neighbor", p->next_hop); } static int bgp_start(struct proto *P) { struct bgp_proto *p = (struct bgp_proto *) P; struct object_lock *lock; DBG("BGP: Startup.\n"); p->outgoing_conn.state = BS_IDLE; p->incoming_conn.state = BS_IDLE; p->startup_delay = 0; p->neigh = NULL; bgp_counter++; bgp_setup_listen_sk(); if (!bgp_linpool) bgp_linpool = lp_new(&root_pool, 4080); /* * Before attempting to create the connection, we need to lock the * port, so that are sure we're the only instance attempting to talk * with that neighbor. */ lock = p->lock = olock_new(P->pool); lock->addr = p->cf->remote_ip; lock->type = OBJLOCK_TCP; lock->port = BGP_PORT; lock->iface = NULL; lock->hook = bgp_start_locked; lock->data = p; olock_acquire(lock); /* We should create security association after we get a lock not to * break existing connections. */ if (p->cf->password) { int rv = sk_set_md5_auth(bgp_listen_sk, p->cf->remote_ip, p->cf->password); if (rv < 0) return PS_STOP; } return PS_START; } static int bgp_shutdown(struct proto *P) { struct bgp_proto *p = (struct bgp_proto *) P; BGP_TRACE(D_EVENTS, "Shutdown requested"); /* * We want to send the Cease notification message to all connections * we have open, but we don't want to wait for all of them to complete. * We are willing to handle the primary connection carefully, but for * the others we just try to send the packet and if there is no buffer * space free, we'll gracefully finish. */ proto_notify_state(&p->p, PS_STOP); if (!p->conn) { if (p->outgoing_conn.state != BS_IDLE) p->outgoing_conn.primary = 1; /* Shuts protocol down after connection close */ else if (p->incoming_conn.state != BS_IDLE) p->incoming_conn.primary = 1; } if (bgp_graceful_close_conn(&p->outgoing_conn) || bgp_graceful_close_conn(&p->incoming_conn)) return p->p.proto_state; else { /* No connections open, shutdown automatically */ bgp_close(p); return PS_DOWN; } } static struct proto * bgp_init(struct proto_config *C) { struct bgp_config *c = (struct bgp_config *) C; struct proto *P = proto_new(C, sizeof(struct bgp_proto)); struct bgp_proto *p = (struct bgp_proto *) P; P->rt_notify = bgp_rt_notify; P->rte_better = bgp_rte_better; P->import_control = bgp_import_control; P->neigh_notify = bgp_neigh_notify; p->cf = c; p->local_as = c->local_as; p->remote_as = c->remote_as; p->is_internal = (c->local_as == c->remote_as); return P; } /** * bgp_error - report a protocol error * @c: connection * @code: error code (according to the RFC) * @subcode: error sub-code * @data: data to be passed in the Notification message * @len: length of the data * * bgp_error() sends a notification packet to tell the other side that a protocol * error has occurred (including the data considered erroneous if possible) and * closes the connection. */ void bgp_error(struct bgp_conn *c, unsigned code, unsigned subcode, byte *data, int len) { if (c->error_flag) return; bgp_log_error(c->bgp, "Error", code, subcode, data, (len > 0) ? len : -len); c->error_flag = 1 + (code != 6); c->notify_code = code; c->notify_subcode = subcode; c->notify_data = data; c->notify_size = (len > 0) ? len : 0; if (c->primary) proto_notify_state(&c->bgp->p, PS_STOP); bgp_schedule_packet(c, PKT_NOTIFICATION); } void bgp_check(struct bgp_config *c) { if (!c->local_as) cf_error("Local AS number must be set"); if (!c->remote_as) cf_error("Neighbor must be configured"); if (!bgp_as4_support && c->enable_as4) cf_error("AS4 support disabled globbaly"); if (!c->enable_as4 && (c->local_as > 0xFFFF)) cf_error("Local AS number out of range"); if (!c->enable_as4 && (c->remote_as > 0xFFFF)) cf_error("Neighbor AS number out of range"); if ((c->local_as != c->remote_as) && (c->rr_client)) cf_error("Only internal neighbor can be RR client"); if ((c->local_as == c->remote_as) && (c->rs_client)) cf_error("Only external neighbor can be RS client"); } static void bgp_get_status(struct proto *P, byte *buf) { struct bgp_proto *p = (struct bgp_proto *) P; if (P->proto_state == PS_DOWN) buf[0] = 0; else strcpy(buf, bgp_state_names[MAX(p->incoming_conn.state, p->outgoing_conn.state)]); } static int bgp_reconfigure(struct proto *P, struct proto_config *C) { struct bgp_config *new = (struct bgp_config *) C; struct bgp_proto *p = (struct bgp_proto *) P; struct bgp_config *old = p->cf; return !memcmp(((byte *) old) + sizeof(struct proto_config), ((byte *) new) + sizeof(struct proto_config), sizeof(struct bgp_config) - sizeof(struct proto_config)); } struct protocol proto_bgp = { name: "BGP", template: "bgp%d", attr_class: EAP_BGP, init: bgp_init, start: bgp_start, shutdown: bgp_shutdown, get_status: bgp_get_status, get_attr: bgp_get_attr, reconfigure: bgp_reconfigure, get_route_info: bgp_get_route_info, };