mirror of
https://github.com/neocturne/libuecc.git
synced 2025-04-19 10:35:08 +02:00
Compare commits
21 commits
Author | SHA1 | Date | |
---|---|---|---|
7c9a6f6af0 | |||
3eb02ade40 | |||
b5b4697c1c | |||
bb87f7b0e8 | |||
26cbc55f78 | |||
5ade164170 | |||
740355d5dd | |||
bb4fcb9328 | |||
fd6b95b775 | |||
5f2814e261 | |||
5f143b1c29 | |||
256e972b36 | |||
a0751e06dc | |||
a20ecf69d8 | |||
c917cec3ef | |||
89f8a35c71 | |||
320daa4838 | |||
55178f5f41 | |||
16636d4f90 | |||
962888f03f | |||
a68abb34c2 |
6 changed files with 866 additions and 297 deletions
34
CHANGELOG
Normal file
34
CHANGELOG
Normal file
|
@ -0,0 +1,34 @@
|
|||
libuecc v7 (2016/03/27)
|
||||
|
||||
* Change conversion between Ed25519 and legacy representation. This should
|
||||
not affect any operations unless Ed25519 and legacy load/store
|
||||
functions are mixed when accessing a work structure. Doing so is now
|
||||
officially supported, for example to convert a legacy public key to
|
||||
Ed25519 format.
|
||||
* The changed representation allows to use the same
|
||||
ecc_25519_work_default_base for both Ed25519 and legacy.
|
||||
ecc_25519_work_default_base and ecc_25519_scalarmult_base have been
|
||||
undeprecated, ecc_25519_work_base_ed25519 and
|
||||
ecc_25519_work_base_legacy are deprecated now.
|
||||
* All points are now internally represented with Ed25519 coordinates, which
|
||||
allows about 6% faster scalar multplication than the legacy
|
||||
representation.
|
||||
* ecc_25519_scalarmult_base has been further optimized, making it another
|
||||
6% faster than normal ecc_25519_scalarmult.
|
||||
|
||||
|
||||
libuecc v6 (2015/10/25)
|
||||
|
||||
* Fixes a bug which might have caused a point's y coordinate to be negated
|
||||
in certain circumstances when the point was stored in packed
|
||||
representation and loaded again. It is extremely improbable that this
|
||||
has ever actually happened, as only a small range of coordinates was
|
||||
affected.
|
||||
* Use stdint types to clarify ABI and add support for systems with
|
||||
sizeof(int) < 4 (this is not an ABI break in practise as all systems on
|
||||
which libuecc has been used in the past should have int == int32_t)
|
||||
* Add point negation and subtraction functions
|
||||
* Rename all point access functions to bear a _legacy suffix (the old names
|
||||
are still available, but marked as deprecated)
|
||||
* Add new point access functions and a new generator point that are
|
||||
compatible with Ed25519
|
|
@ -1,6 +1,6 @@
|
|||
cmake_minimum_required(VERSION 2.6)
|
||||
project(LIBUECC C)
|
||||
set(PROJECT_VERSION 5)
|
||||
set(PROJECT_VERSION 7)
|
||||
|
||||
set(CMAKE_MODULE_PATH ${LIBUECC_SOURCE_DIR})
|
||||
|
||||
|
|
30
README
Normal file
30
README
Normal file
|
@ -0,0 +1,30 @@
|
|||
libuecc is a very small generic-purpose Elliptic Curve Cryptography library
|
||||
compatible with Ed25519.
|
||||
|
||||
Most documentation can be found as Doxygen comments in the ecc.h header
|
||||
file. You can use `make doxygen` after running CMake to create HTML
|
||||
documenation from it.
|
||||
|
||||
There are two sets of functions converting between libuecc's internal point
|
||||
representation and coordinates or compressed representation. The functions
|
||||
ending with _ed25519 use the same representation as original Ed25519
|
||||
implementation and should be used by new software. The functions with the
|
||||
suffix _legacy are provided for compatiblity with libuecc version before
|
||||
v6.
|
||||
|
||||
Ed25519 and the legacy representation are isomorphic, they use a Twisted
|
||||
Edwards Curve
|
||||
|
||||
ax^2 + y^2 = 1 + dx^2y^2
|
||||
|
||||
over the prime field for p = 2^255 - 19.
|
||||
|
||||
Ed25519 uses the parameters
|
||||
|
||||
a = -1 and
|
||||
d = -(121665/121666),
|
||||
|
||||
while the legacy curve has
|
||||
|
||||
a = 486664
|
||||
d = 486660.
|
|
@ -27,6 +27,14 @@
|
|||
#ifndef _LIBUECC_ECC_H_
|
||||
#define _LIBUECC_ECC_H_
|
||||
|
||||
#ifndef DEPRECATED
|
||||
#define DEPRECATED __attribute__((deprecated))
|
||||
#endif
|
||||
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
|
||||
/**
|
||||
* A 256 bit integer
|
||||
*
|
||||
|
@ -34,7 +42,7 @@
|
|||
*/
|
||||
typedef union _ecc_int256 {
|
||||
/** Data bytes */
|
||||
unsigned char p[32];
|
||||
uint8_t p[32];
|
||||
} ecc_int256_t;
|
||||
|
||||
/**
|
||||
|
@ -44,10 +52,10 @@ typedef union _ecc_int256 {
|
|||
* it should always be packed.
|
||||
*/
|
||||
typedef struct _ecc_25519_work {
|
||||
unsigned int X[32];
|
||||
unsigned int Y[32];
|
||||
unsigned int Z[32];
|
||||
unsigned int T[32];
|
||||
uint32_t X[32];
|
||||
uint32_t Y[32];
|
||||
uint32_t Z[32];
|
||||
uint32_t T[32];
|
||||
} ecc_25519_work_t;
|
||||
|
||||
/**
|
||||
|
@ -55,22 +63,205 @@ typedef struct _ecc_25519_work {
|
|||
* @{
|
||||
*/
|
||||
|
||||
/** The identity element */
|
||||
extern const ecc_25519_work_t ecc_25519_work_identity;
|
||||
|
||||
|
||||
/**
|
||||
* The Ed25519 default generator point
|
||||
*
|
||||
* \deprecated Use the equivalent \ref ecc_25519_work_default_base instead.
|
||||
*
|
||||
**/
|
||||
DEPRECATED extern const ecc_25519_work_t ecc_25519_work_base_ed25519;
|
||||
|
||||
/**
|
||||
* The Ed25519 default generator point
|
||||
*
|
||||
* \deprecated Use the equivalent \ref ecc_25519_work_default_base instead.
|
||||
*/
|
||||
DEPRECATED extern const ecc_25519_work_t ecc_25519_work_base_legacy;
|
||||
|
||||
|
||||
/**
|
||||
* The Ed25519 default generator point
|
||||
*
|
||||
* The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
|
||||
*/
|
||||
extern const ecc_25519_work_t ecc_25519_work_default_base;
|
||||
|
||||
int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y);
|
||||
void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in);
|
||||
|
||||
int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in);
|
||||
void ecc_25519_store_packed(ecc_int256_t *out, const ecc_25519_work_t *in);
|
||||
/** Loads a point of the Ed25519 curve with given coordinates into its unpacked representation */
|
||||
int ecc_25519_load_xy_ed25519(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y);
|
||||
|
||||
/**
|
||||
* Loads a point of the legacy curve with given coordinates into its unpacked representation
|
||||
*
|
||||
* New software should use \ref ecc_25519_load_xy_ed25519, which uses the same curve as the Ed25519 algorithm.
|
||||
*/
|
||||
int ecc_25519_load_xy_legacy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y);
|
||||
|
||||
/**
|
||||
* Loads a point of the legacy curve with given coordinates into its unpacked representation
|
||||
*
|
||||
* \deprecated Use \ref ecc_25519_load_xy_legacy
|
||||
*/
|
||||
DEPRECATED int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y);
|
||||
|
||||
|
||||
/**
|
||||
* Stores the x and y coordinates of a point of the Ed25519 curve
|
||||
*
|
||||
* \param x Returns the x coordinate of the point. May be NULL.
|
||||
* \param y Returns the y coordinate of the point. May be NULL.
|
||||
* \param in The unpacked point to store.
|
||||
*/
|
||||
void ecc_25519_store_xy_ed25519(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in);
|
||||
|
||||
/**
|
||||
* Stores the x and y coordinates of a point of the legacy curve
|
||||
*
|
||||
* New software should use \ref ecc_25519_store_xy_ed25519, which uses the same curve as the Ed25519 algorithm.
|
||||
*
|
||||
* \param x Returns the x coordinate of the point. May be NULL.
|
||||
* \param y Returns the y coordinate of the point. May be NULL.
|
||||
* \param in The unpacked point to store.
|
||||
*/
|
||||
void ecc_25519_store_xy_legacy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in);
|
||||
|
||||
/**
|
||||
* Stores a point's x and y coordinates
|
||||
*
|
||||
* \param x Returns the x coordinate of the point. May be NULL.
|
||||
* \param y Returns the y coordinate of the point. May be NULL.
|
||||
* \param in The unpacked point to store.
|
||||
*
|
||||
* \deprecated Use \ref ecc_25519_store_xy_legacy
|
||||
*/
|
||||
DEPRECATED void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in);
|
||||
|
||||
|
||||
/**
|
||||
* Loads a packed point of the Ed25519 curve into its unpacked representation
|
||||
*
|
||||
* The packed format is different from the legacy one: the legacy format contains that X coordinate and the parity of the Y coordinate,
|
||||
* Ed25519 uses the Y coordinate and the parity of the X coordinate.
|
||||
*/
|
||||
int ecc_25519_load_packed_ed25519(ecc_25519_work_t *out, const ecc_int256_t *in);
|
||||
|
||||
/**
|
||||
* Loads a packed point of the legacy curve into its unpacked representation
|
||||
*
|
||||
* New software should use \ref ecc_25519_load_packed_ed25519, which uses the same curve and packed representation as the Ed25519 algorithm.
|
||||
*
|
||||
* The packed format is different from the Ed25519 one: the legacy format contains that X coordinate and the parity of the Y coordinate,
|
||||
* Ed25519 uses the Y coordinate and the parity of the X coordinate.
|
||||
*/
|
||||
int ecc_25519_load_packed_legacy(ecc_25519_work_t *out, const ecc_int256_t *in);
|
||||
|
||||
/**
|
||||
* Loads a packed point of the legacy curve into its unpacked representation
|
||||
*
|
||||
* \deprecated Use \ref ecc_25519_load_packed_legacy
|
||||
*/
|
||||
DEPRECATED int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in);
|
||||
|
||||
|
||||
/**
|
||||
* Stores a point of the Ed25519 curve into its packed representation
|
||||
*
|
||||
* The packed format is different from the Ed25519 one: the legacy format contains that X coordinate and the parity of the Y coordinate,
|
||||
* Ed25519 uses the Y coordinate and the parity of the X coordinate.
|
||||
*/
|
||||
void ecc_25519_store_packed_ed25519(ecc_int256_t *out, const ecc_25519_work_t *in);
|
||||
|
||||
/**
|
||||
* Stores a point of the legacy curve into its packed representation
|
||||
*
|
||||
* New software should use \ref ecc_25519_store_packed_ed25519, which uses the same curve and packed representation as the Ed25519 algorithm.
|
||||
*
|
||||
* The packed format is different from the Ed25519 one: the legacy format contains that X coordinate and the parity of the Y coordinate,
|
||||
* Ed25519 uses the Y coordinate and the parity of the X coordinate.
|
||||
*/
|
||||
void ecc_25519_store_packed_legacy(ecc_int256_t *out, const ecc_25519_work_t *in);
|
||||
|
||||
/**
|
||||
* Stores a point of the legacy curve into its packed representation
|
||||
*
|
||||
* \deprecated Use \ref ecc_25519_store_packed_legacy
|
||||
*/
|
||||
DEPRECATED void ecc_25519_store_packed(ecc_int256_t *out, const ecc_25519_work_t *in);
|
||||
|
||||
|
||||
/** Checks if a point is the identity element of the Elliptic Curve group */
|
||||
int ecc_25519_is_identity(const ecc_25519_work_t *in);
|
||||
|
||||
/**
|
||||
* Negates a point of the Elliptic Curve
|
||||
*
|
||||
* The same pointer may be given for input and output
|
||||
*/
|
||||
void ecc_25519_negate(ecc_25519_work_t *out, const ecc_25519_work_t *in);
|
||||
|
||||
/**
|
||||
* Doubles a point of the Elliptic Curve
|
||||
*
|
||||
* ecc_25519_double(out, in) is equivalent to ecc_25519_add(out, in, in), but faster.
|
||||
*
|
||||
* The same pointer may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_double(ecc_25519_work_t *out, const ecc_25519_work_t *in);
|
||||
|
||||
/**
|
||||
* Adds two points of the Elliptic Curve
|
||||
*
|
||||
* The same pointers may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_add(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2);
|
||||
|
||||
/**
|
||||
* Subtracts two points of the Elliptic Curve
|
||||
*
|
||||
* The same pointers may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_sub(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2);
|
||||
|
||||
/**
|
||||
* Does a scalar multiplication of a point of the Elliptic Curve with an integer of a given bit length
|
||||
*
|
||||
* To speed up scalar multiplication when it is known that not the whole 256 bits of the scalar
|
||||
* are used. The bit length should always be a constant and not computed at runtime to ensure
|
||||
* that no timing attacks are possible.
|
||||
*
|
||||
* The same pointer may be given for input and output.
|
||||
**/
|
||||
void ecc_25519_scalarmult_bits(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base, unsigned bits);
|
||||
|
||||
/**
|
||||
* Does a scalar multiplication of a point of the Elliptic Curve with an integer
|
||||
*
|
||||
* The same pointer may be given for input and output.
|
||||
**/
|
||||
void ecc_25519_scalarmult(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base);
|
||||
|
||||
/**
|
||||
* Does a scalar multiplication of the default base point (generator element) of the Elliptic Curve with an integer of a given bit length
|
||||
*
|
||||
* The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
|
||||
*
|
||||
* ecc_25519_scalarmult_base_bits(out, n, bits) is faster than ecc_25519_scalarmult_bits(out, n, &ecc_25519_work_default_base, bits).
|
||||
*
|
||||
* See the notes about \ref ecc_25519_scalarmult_bits before using this function.
|
||||
*/
|
||||
void ecc_25519_scalarmult_base_bits(ecc_25519_work_t *out, const ecc_int256_t *n, unsigned bits);
|
||||
|
||||
/**
|
||||
* Does a scalar multiplication of the default base point (generator element) of the Elliptic Curve with an integer
|
||||
*
|
||||
* The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
|
||||
*
|
||||
* ecc_25519_scalarmult_base(out, n) is faster than ecc_25519_scalarmult(out, n, &ecc_25519_work_default_base).
|
||||
*/
|
||||
void ecc_25519_scalarmult_base(ecc_25519_work_t *out, const ecc_int256_t *n);
|
||||
|
||||
/**@}*/
|
||||
|
@ -80,14 +271,61 @@ void ecc_25519_scalarmult_base(ecc_25519_work_t *out, const ecc_int256_t *n);
|
|||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* The order of the prime field
|
||||
*
|
||||
* The order is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
|
||||
*/
|
||||
extern const ecc_int256_t ecc_25519_gf_order;
|
||||
|
||||
|
||||
/** Checks if an integer is equal to zero (after reduction) */
|
||||
int ecc_25519_gf_is_zero(const ecc_int256_t *in);
|
||||
|
||||
/**
|
||||
* Adds two integers as Galois field elements
|
||||
*
|
||||
* The same pointers may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_add(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2);
|
||||
|
||||
/**
|
||||
* Subtracts two integers as Galois field elements
|
||||
*
|
||||
* The same pointers may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_sub(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2);
|
||||
|
||||
/**
|
||||
* Reduces an integer to a unique representation in the range \f$ [0,q-1] \f$
|
||||
*
|
||||
* The same pointer may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_reduce(ecc_int256_t *out, const ecc_int256_t *in);
|
||||
|
||||
/**
|
||||
* Multiplies two integers as Galois field elements
|
||||
*
|
||||
* The same pointers may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_mult(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2);
|
||||
|
||||
/**
|
||||
* Computes the reciprocal of a Galois field element
|
||||
*
|
||||
* The same pointers may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_recip(ecc_int256_t *out, const ecc_int256_t *in);
|
||||
|
||||
/**
|
||||
* Ensures some properties of a Galois field element to make it fit for use as a secret key
|
||||
*
|
||||
* This sets the 255th bit and clears the 256th and the bottom three bits (so the key
|
||||
* will be a multiple of 8). See Daniel J. Bernsteins paper "Curve25519: new Diffie-Hellman speed records."
|
||||
* for the rationale of this.
|
||||
*
|
||||
* The same pointer may be given for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_sanitize_secret(ecc_int256_t *out, const ecc_int256_t *in);
|
||||
|
||||
/**@}*/
|
||||
|
|
747
src/ec25519.c
747
src/ec25519.c
|
@ -25,156 +25,324 @@
|
|||
*/
|
||||
|
||||
/** \file
|
||||
* EC group operations for Twisted Edwards Curve \f$ ax^2 + y^2 = 1 + dx^2y^2 \f$ with
|
||||
* \f$ a = 486664 \f$ and
|
||||
* \f$ d = 486660 \f$
|
||||
* EC group operations for Twisted Edwards Curve \f$ ax^2 + y^2 = 1 + dx^2y^2 \f$
|
||||
* on prime field \f$ p = 2^{255} - 19 \f$.
|
||||
*
|
||||
* The curve is equivalent to the Montgomery Curve used in D. J. Bernstein's
|
||||
* Two different (isomorphic) sets of curve parameters are supported:
|
||||
*
|
||||
* \f$ a = 486664 \f$ and
|
||||
* \f$ d = 486660 \f$
|
||||
* are the parameters used by the original libuecc implementation (till v5).
|
||||
* To use points on this curve, use the functions with the suffix \em legacy.
|
||||
*
|
||||
* The other supported curve uses the parameters
|
||||
* \f$ a = -1 \f$ and
|
||||
* \f$ d = -(121665/121666) \f$,
|
||||
* which is the curve used by the Ed25519 algorithm. The functions for this curve
|
||||
* have the suffix \em ed25519.
|
||||
*
|
||||
* Internally, libuecc always uses the latter representation for its \em work structure.
|
||||
*
|
||||
* The curves are equivalent to the Montgomery Curve used in D. J. Bernstein's
|
||||
* Curve25519 Diffie-Hellman algorithm.
|
||||
*
|
||||
* See http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html for add and
|
||||
* double operations.
|
||||
*
|
||||
* Doxygen comments for public APIs can be found in the public header file.
|
||||
*
|
||||
* Invariant that must be held by all public API: the components of an
|
||||
* \ref ecc_25519_work_t are always in the range \f$ [0, 2p) \f$.
|
||||
* Integers in this range will be called \em squeezed in the following.
|
||||
*/
|
||||
|
||||
#include <libuecc/ecc.h>
|
||||
|
||||
|
||||
/** The identity element */
|
||||
const ecc_25519_work_t ecc_25519_work_identity = {{0}, {1}, {1}, {0}};
|
||||
|
||||
|
||||
/** The ec25519 default base */
|
||||
const ecc_25519_work_t ecc_25519_work_default_base = {
|
||||
{0xd4, 0x6b, 0xfe, 0x7f, 0x39, 0xfa, 0x8c, 0x22,
|
||||
0xe1, 0x96, 0x23, 0xeb, 0x26, 0xb7, 0x8e, 0x6a,
|
||||
0x34, 0x74, 0x8b, 0x66, 0xd6, 0xa3, 0x26, 0xdd,
|
||||
0x19, 0x5e, 0x9f, 0x21, 0x50, 0x43, 0x7c, 0x54},
|
||||
const ecc_25519_work_t ecc_25519_work_base_legacy = {
|
||||
{0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
|
||||
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
|
||||
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
|
||||
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21},
|
||||
{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66},
|
||||
{1},
|
||||
{0x47, 0x56, 0x98, 0x99, 0xc7, 0x61, 0x0a, 0x82,
|
||||
0x1a, 0xdf, 0x82, 0x22, 0x1f, 0x2c, 0x72, 0x88,
|
||||
0xc3, 0x29, 0x09, 0x52, 0x78, 0xe9, 0x1e, 0xe4,
|
||||
0x47, 0x4b, 0x4c, 0x81, 0xa6, 0x02, 0xfd, 0x29}
|
||||
{0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
|
||||
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
|
||||
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
|
||||
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67},
|
||||
};
|
||||
|
||||
const ecc_25519_work_t ecc_25519_work_default_base = {
|
||||
{0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
|
||||
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
|
||||
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
|
||||
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21},
|
||||
{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66},
|
||||
{1},
|
||||
{0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
|
||||
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
|
||||
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
|
||||
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67},
|
||||
};
|
||||
|
||||
|
||||
static const unsigned int zero[32] = {0};
|
||||
static const unsigned int one[32] = {1};
|
||||
const ecc_25519_work_t ecc_25519_work_base_ed25519 = {
|
||||
{0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
|
||||
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
|
||||
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
|
||||
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21},
|
||||
{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
||||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66},
|
||||
{1},
|
||||
{0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
|
||||
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
|
||||
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
|
||||
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67},
|
||||
};
|
||||
|
||||
|
||||
static const uint32_t zero[32] = {0};
|
||||
static const uint32_t one[32] = {1};
|
||||
|
||||
static const uint32_t minus1[32] = {
|
||||
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
|
||||
};
|
||||
|
||||
/** Ed25519 parameter -(121665/121666) */
|
||||
static const uint32_t d[32] = {
|
||||
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
|
||||
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
|
||||
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
|
||||
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52,
|
||||
};
|
||||
|
||||
|
||||
/** Factor to multiply the X coordinate with to convert from the legacy to the Ed25519 curve */
|
||||
static const uint32_t legacy_to_ed25519[32] = {
|
||||
0xe7, 0x81, 0xba, 0x00, 0x55, 0xfb, 0x91, 0x33,
|
||||
0x7d, 0xe5, 0x82, 0xb4, 0x2e, 0x2c, 0x5e, 0x3a,
|
||||
0x81, 0xb0, 0x03, 0xfc, 0x23, 0xf7, 0x84, 0x2d,
|
||||
0x44, 0xf9, 0x5f, 0x9f, 0x0b, 0x12, 0xd9, 0x70,
|
||||
};
|
||||
|
||||
/** Factor to multiply the X coordinate with to convert from the Ed25519 to the legacy curve */
|
||||
static const uint32_t ed25519_to_legacy[32] = {
|
||||
0xe9, 0x68, 0x42, 0xdb, 0xaf, 0x04, 0xb4, 0x40,
|
||||
0xa1, 0xd5, 0x43, 0xf2, 0xf9, 0x38, 0x31, 0x28,
|
||||
0x01, 0x17, 0x05, 0x67, 0x9b, 0x81, 0x61, 0xf8,
|
||||
0xa9, 0x5b, 0x3e, 0x6a, 0x20, 0x67, 0x4b, 0x24,
|
||||
};
|
||||
|
||||
|
||||
/** Adds two unpacked integers (modulo p) */
|
||||
static void add(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) {
|
||||
static void add(uint32_t out[32], const uint32_t a[32], const uint32_t b[32]) {
|
||||
unsigned int j;
|
||||
unsigned int u;
|
||||
u = 0;
|
||||
for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; }
|
||||
u += a[31] + b[31]; out[31] = u;
|
||||
}
|
||||
uint32_t u;
|
||||
|
||||
/** Subtracts two unpacked integers (modulo p) */
|
||||
static void sub(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) {
|
||||
unsigned int j;
|
||||
unsigned int u;
|
||||
u = 218;
|
||||
for (j = 0;j < 31;++j) {
|
||||
u += a[j] + 65280 - b[j];
|
||||
u = 0;
|
||||
|
||||
for (j = 0; j < 31; j++) {
|
||||
u += a[j] + b[j];
|
||||
out[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
|
||||
u += a[31] + b[31];
|
||||
out[31] = u;
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtracts two unpacked integers (modulo p)
|
||||
*
|
||||
* b must be \em squeezed.
|
||||
*/
|
||||
static void sub(uint32_t out[32], const uint32_t a[32], const uint32_t b[32]) {
|
||||
unsigned int j;
|
||||
uint32_t u;
|
||||
|
||||
u = 218;
|
||||
|
||||
for (j = 0;j < 31;++j) {
|
||||
u += a[j] + UINT32_C(65280) - b[j];
|
||||
out[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
|
||||
u += a[31] - b[31];
|
||||
out[31] = u;
|
||||
}
|
||||
|
||||
/** Performs carry and reduce on an unpacked integer */
|
||||
static void squeeze(unsigned int a[32]) {
|
||||
/**
|
||||
* Performs carry and reduce on an unpacked integer
|
||||
*
|
||||
* The result is not always fully reduced, but it will be significantly smaller than \f$ 2p \f$.
|
||||
*/
|
||||
static void squeeze(uint32_t a[32]) {
|
||||
unsigned int j;
|
||||
unsigned int u;
|
||||
uint32_t u;
|
||||
|
||||
u = 0;
|
||||
for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; }
|
||||
u += a[31]; a[31] = u & 127;
|
||||
|
||||
for (j = 0;j < 31;++j) {
|
||||
u += a[j];
|
||||
a[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
|
||||
u += a[31];
|
||||
a[31] = u & 127;
|
||||
u = 19 * (u >> 7);
|
||||
for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; }
|
||||
u += a[31]; a[31] = u;
|
||||
|
||||
for (j = 0;j < 31;++j) {
|
||||
u += a[j];
|
||||
a[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
|
||||
u += a[31];
|
||||
a[31] = u;
|
||||
}
|
||||
|
||||
|
||||
static const uint32_t minusp[32] = {
|
||||
19, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 128
|
||||
};
|
||||
|
||||
/**
|
||||
* Ensures that the output of a previous \ref squeeze is fully reduced
|
||||
*
|
||||
* After a \ref freeze, only the lower byte of each integer part holds a meaningful value
|
||||
* After a \ref freeze, only the lower byte of each integer part holds a meaningful value.
|
||||
*/
|
||||
static void freeze(unsigned int a[32]) {
|
||||
static const unsigned int minusp[32] = {
|
||||
19, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 128
|
||||
};
|
||||
|
||||
unsigned int aorig[32];
|
||||
static void freeze(uint32_t a[32]) {
|
||||
uint32_t aorig[32];
|
||||
unsigned int j;
|
||||
unsigned int negative;
|
||||
uint32_t negative;
|
||||
|
||||
for (j = 0; j < 32; j++) aorig[j] = a[j];
|
||||
for (j = 0; j < 32; j++)
|
||||
aorig[j] = a[j];
|
||||
add(a, a, minusp);
|
||||
negative = -((a[31] >> 7) & 1);
|
||||
for (j = 0; j < 32; j++) a[j] ^= negative & (aorig[j] ^ a[j]);
|
||||
|
||||
for (j = 0; j < 32; j++)
|
||||
a[j] ^= negative & (aorig[j] ^ a[j]);
|
||||
}
|
||||
|
||||
/** Multiplies two unpacked integers (modulo p) */
|
||||
static void mult(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) {
|
||||
unsigned int i;
|
||||
unsigned int j;
|
||||
unsigned int u;
|
||||
/**
|
||||
* Returns the parity (lowest bit of the fully reduced value) of a
|
||||
*
|
||||
* The input must be \em squeezed.
|
||||
*/
|
||||
static int parity(const uint32_t a[32]) {
|
||||
uint32_t b[32];
|
||||
|
||||
add(b, a, minusp);
|
||||
return (a[0] ^ (b[31] >> 7) ^ 1) & 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiplies two unpacked integers (modulo p)
|
||||
*
|
||||
* The result will be \em squeezed.
|
||||
*/
|
||||
static void mult(uint32_t out[32], const uint32_t a[32], const uint32_t b[32]) {
|
||||
unsigned int i, j;
|
||||
uint32_t u;
|
||||
|
||||
for (i = 0; i < 32; ++i) {
|
||||
u = 0;
|
||||
for (j = 0;j <= i;++j) u += a[j] * b[i - j];
|
||||
for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j];
|
||||
|
||||
for (j = 0; j <= i; j++)
|
||||
u += a[j] * b[i - j];
|
||||
|
||||
for (j = i + 1; j < 32; j++)
|
||||
u += 38 * a[j] * b[i + 32 - j];
|
||||
|
||||
out[i] = u;
|
||||
}
|
||||
|
||||
squeeze(out);
|
||||
}
|
||||
|
||||
/** Multiplies an unpacked integer with a small integer (modulo p) */
|
||||
static void mult_int(unsigned int out[32], unsigned int n, const unsigned int a[32]) {
|
||||
/**
|
||||
* Multiplies an unpacked integer with a small integer (modulo p)
|
||||
*
|
||||
* The result will be \em squeezed.
|
||||
*/
|
||||
static void mult_int(uint32_t out[32], uint32_t n, const uint32_t a[32]) {
|
||||
unsigned int j;
|
||||
unsigned int u;
|
||||
uint32_t u;
|
||||
|
||||
u = 0;
|
||||
for (j = 0;j < 31;++j) { u += n * a[j]; out[j] = u & 255; u >>= 8; }
|
||||
|
||||
for (j = 0; j < 31; j++) {
|
||||
u += n * a[j];
|
||||
out[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
|
||||
u += n * a[31]; out[31] = u & 127;
|
||||
u = 19 * (u >> 7);
|
||||
for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; }
|
||||
u += out[j]; out[j] = u;
|
||||
|
||||
for (j = 0; j < 31; j++) {
|
||||
u += out[j];
|
||||
out[j] = u & 255;
|
||||
u >>= 8;
|
||||
}
|
||||
|
||||
u += out[j];
|
||||
out[j] = u;
|
||||
}
|
||||
|
||||
/** Squares an unpacked integer */
|
||||
static void square(unsigned int out[32], const unsigned int a[32]) {
|
||||
unsigned int i;
|
||||
unsigned int j;
|
||||
unsigned int u;
|
||||
/**
|
||||
* Squares an unpacked integer
|
||||
*
|
||||
* The result will be sqeezed.
|
||||
*/
|
||||
static void square(uint32_t out[32], const uint32_t a[32]) {
|
||||
unsigned int i, j;
|
||||
uint32_t u;
|
||||
|
||||
for (i = 0; i < 32; ++i) {
|
||||
for (i = 0; i < 32; i++) {
|
||||
u = 0;
|
||||
for (j = 0;j < i - j;++j) u += a[j] * a[i - j];
|
||||
for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j];
|
||||
|
||||
for (j = 0; j < i - j; j++)
|
||||
u += a[j] * a[i - j];
|
||||
|
||||
for (j = i + 1; j < i + 32 - j; j++)
|
||||
u += 38 * a[j] * a[i + 32 - j];
|
||||
|
||||
u *= 2;
|
||||
|
||||
if ((i & 1) == 0) {
|
||||
u += a[i / 2] * a[i / 2];
|
||||
u += 38 * a[i / 2 + 16] * a[i / 2 + 16];
|
||||
}
|
||||
|
||||
out[i] = u;
|
||||
}
|
||||
|
||||
squeeze(out);
|
||||
}
|
||||
|
||||
/** Checks for the equality of two unpacked integers */
|
||||
static int check_equal(const unsigned int x[32], const unsigned int y[32]) {
|
||||
unsigned int differentbits = 0;
|
||||
static int check_equal(const uint32_t x[32], const uint32_t y[32]) {
|
||||
uint32_t differentbits = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
|
@ -186,12 +354,12 @@ static int check_equal(const unsigned int x[32], const unsigned int y[32]) {
|
|||
}
|
||||
|
||||
/**
|
||||
* Checks if an unpacked integer equals zero
|
||||
* Checks if an unpacked integer equals zero (modulo p)
|
||||
*
|
||||
* The intergers must be must be \ref squeeze "squeezed" before.
|
||||
* The integer must be squeezed before.
|
||||
*/
|
||||
static int check_zero(const unsigned int x[32]) {
|
||||
static const unsigned int p[32] = {
|
||||
static int check_zero(const uint32_t x[32]) {
|
||||
static const uint32_t p[32] = {
|
||||
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
|
@ -202,10 +370,10 @@ static int check_zero(const unsigned int x[32]) {
|
|||
}
|
||||
|
||||
/** Copies r to out when b == 0, s when b == 1 */
|
||||
static void selectw(ecc_25519_work_t *out, const ecc_25519_work_t *r, const ecc_25519_work_t *s, unsigned int b) {
|
||||
static void selectw(ecc_25519_work_t *out, const ecc_25519_work_t *r, const ecc_25519_work_t *s, uint32_t b) {
|
||||
unsigned int j;
|
||||
unsigned int t;
|
||||
unsigned int bminus1;
|
||||
uint32_t t;
|
||||
uint32_t bminus1;
|
||||
|
||||
bminus1 = b - 1;
|
||||
for (j = 0; j < 32; ++j) {
|
||||
|
@ -224,10 +392,10 @@ static void selectw(ecc_25519_work_t *out, const ecc_25519_work_t *r, const ecc_
|
|||
}
|
||||
|
||||
/** Copies r to out when b == 0, s when b == 1 */
|
||||
static void select(unsigned int out[32], const unsigned int r[32], const unsigned int s[32], unsigned int b) {
|
||||
static void select(uint32_t out[32], const uint32_t r[32], const uint32_t s[32], uint32_t b) {
|
||||
unsigned int j;
|
||||
unsigned int t;
|
||||
unsigned int bminus1;
|
||||
uint32_t t;
|
||||
uint32_t bminus1;
|
||||
|
||||
bminus1 = b - 1;
|
||||
for (j = 0;j < 32;++j) {
|
||||
|
@ -241,15 +409,8 @@ static void select(unsigned int out[32], const unsigned int r[32], const unsigne
|
|||
*
|
||||
* If the given integer has no square root, 0 is returned, 1 otherwise.
|
||||
*/
|
||||
static int square_root(unsigned int out[32], const unsigned int z[32]) {
|
||||
static const unsigned int minus1[32] = {
|
||||
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f
|
||||
};
|
||||
|
||||
static const unsigned int rho_s[32] = {
|
||||
static int square_root(uint32_t out[32], const uint32_t z[32]) {
|
||||
static const uint32_t rho_s[32] = {
|
||||
0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
|
||||
0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
|
||||
0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
|
||||
|
@ -258,18 +419,18 @@ static int square_root(unsigned int out[32], const unsigned int z[32]) {
|
|||
|
||||
/* raise z to power (2^252-2), check if power (2^253-5) equals -1 */
|
||||
|
||||
unsigned int z2[32];
|
||||
unsigned int z9[32];
|
||||
unsigned int z11[32];
|
||||
unsigned int z2_5_0[32];
|
||||
unsigned int z2_10_0[32];
|
||||
unsigned int z2_20_0[32];
|
||||
unsigned int z2_50_0[32];
|
||||
unsigned int z2_100_0[32];
|
||||
unsigned int t0[32];
|
||||
unsigned int t1[32];
|
||||
unsigned int z2_252_1[32];
|
||||
unsigned int z2_252_1_rho_s[32];
|
||||
uint32_t z2[32];
|
||||
uint32_t z9[32];
|
||||
uint32_t z11[32];
|
||||
uint32_t z2_5_0[32];
|
||||
uint32_t z2_10_0[32];
|
||||
uint32_t z2_20_0[32];
|
||||
uint32_t z2_50_0[32];
|
||||
uint32_t z2_100_0[32];
|
||||
uint32_t t0[32];
|
||||
uint32_t t1[32];
|
||||
uint32_t z2_252_1[32];
|
||||
uint32_t z2_252_1_rho_s[32];
|
||||
int i;
|
||||
|
||||
/* 2 */ square(z2, z);
|
||||
|
@ -335,17 +496,17 @@ static int square_root(unsigned int out[32], const unsigned int z[32]) {
|
|||
}
|
||||
|
||||
/** Computes the reciprocal of an unpacked integer (in the prime field modulo p) */
|
||||
static void recip(unsigned int out[32], const unsigned int z[32]) {
|
||||
unsigned int z2[32];
|
||||
unsigned int z9[32];
|
||||
unsigned int z11[32];
|
||||
unsigned int z2_5_0[32];
|
||||
unsigned int z2_10_0[32];
|
||||
unsigned int z2_20_0[32];
|
||||
unsigned int z2_50_0[32];
|
||||
unsigned int z2_100_0[32];
|
||||
unsigned int t0[32];
|
||||
unsigned int t1[32];
|
||||
static void recip(uint32_t out[32], const uint32_t z[32]) {
|
||||
uint32_t z2[32];
|
||||
uint32_t z9[32];
|
||||
uint32_t z11[32];
|
||||
uint32_t z2_5_0[32];
|
||||
uint32_t z2_10_0[32];
|
||||
uint32_t z2_20_0[32];
|
||||
uint32_t z2_50_0[32];
|
||||
uint32_t z2_100_0[32];
|
||||
uint32_t t0[32];
|
||||
uint32_t t1[32];
|
||||
int i;
|
||||
|
||||
/* 2 */ square(z2, z);
|
||||
|
@ -401,10 +562,37 @@ static void recip(unsigned int out[32], const unsigned int z[32]) {
|
|||
/* 2^255 - 21 */ mult(out, t1, z11);
|
||||
}
|
||||
|
||||
/** Loads a point with given coordinates into its unpacked representation */
|
||||
int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) {
|
||||
/**
|
||||
* Checks if the X and Y coordinates of a work structure represent a valid point of the curve
|
||||
*
|
||||
* Also fills in the T coordinate.
|
||||
*/
|
||||
static int check_load_xy(ecc_25519_work_t *val) {
|
||||
uint32_t X2[32], Y2[32], dX2[32], dX2Y2[32], Y2_X2[32], Y2_X2_1[32], r[32];
|
||||
|
||||
/* Check validity */
|
||||
square(X2, val->X);
|
||||
square(Y2, val->Y);
|
||||
|
||||
mult(dX2, d, X2);
|
||||
mult(dX2Y2, dX2, Y2);
|
||||
|
||||
sub(Y2_X2, Y2, X2);
|
||||
sub(Y2_X2_1, Y2_X2, one);
|
||||
|
||||
sub(r, Y2_X2_1, dX2Y2);
|
||||
squeeze(r);
|
||||
|
||||
if (!check_zero(r))
|
||||
return 0;
|
||||
|
||||
mult(val->T, val->X, val->Y);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ecc_25519_load_xy_ed25519(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) {
|
||||
int i;
|
||||
unsigned int X2[32], Y2[32], aX2[32], dX2[32], dX2Y2[32], aX2_Y2[32], _1_dX2Y2[32], r[32];
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
out->X[i] = x->p[i];
|
||||
|
@ -412,34 +600,31 @@ int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_in
|
|||
out->Z[i] = (i == 0);
|
||||
}
|
||||
|
||||
/* Check validity */
|
||||
square(X2, out->X);
|
||||
square(Y2, out->Y);
|
||||
mult_int(aX2, 486664, X2);
|
||||
mult_int(dX2, 486660, X2);
|
||||
mult(dX2Y2, dX2, Y2);
|
||||
add(aX2_Y2, aX2, Y2);
|
||||
add(_1_dX2Y2, one, dX2Y2);
|
||||
sub(r, aX2_Y2, _1_dX2Y2);
|
||||
squeeze(r);
|
||||
|
||||
if (!check_zero(r))
|
||||
return 0;
|
||||
|
||||
mult(out->T, out->X, out->Y);
|
||||
|
||||
return 1;
|
||||
return check_load_xy(out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Stores a point's x and y coordinates
|
||||
*
|
||||
* \param x Returns the x coordinate of the point. May be NULL.
|
||||
* \param y Returns the y coordinate of the point. May be NULL.
|
||||
* \param in The unpacked point to store.
|
||||
*/
|
||||
void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) {
|
||||
unsigned int X[32], Y[32], Z[32];
|
||||
int ecc_25519_load_xy_legacy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) {
|
||||
int i;
|
||||
uint32_t tmp[32];
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
tmp[i] = x->p[i];
|
||||
out->Y[i] = y->p[i];
|
||||
out->Z[i] = (i == 0);
|
||||
}
|
||||
|
||||
mult(out->X, tmp, legacy_to_ed25519);
|
||||
|
||||
return check_load_xy(out);
|
||||
}
|
||||
|
||||
int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) {
|
||||
return ecc_25519_load_xy_legacy(out, x, y);
|
||||
}
|
||||
|
||||
|
||||
void ecc_25519_store_xy_ed25519(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) {
|
||||
uint32_t X[32], Y[32], Z[32];
|
||||
int i;
|
||||
|
||||
recip(Z, in->Z);
|
||||
|
@ -459,22 +644,80 @@ void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t
|
|||
}
|
||||
}
|
||||
|
||||
/** Loads a packed point into its unpacked representation */
|
||||
int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in) {
|
||||
void ecc_25519_store_xy_legacy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) {
|
||||
uint32_t X[32], tmp[32], Y[32], Z[32];
|
||||
int i;
|
||||
unsigned int X2[32] /* X^2 */, aX2[32] /* aX^2 */, dX2[32] /* dX^2 */, _1_aX2[32] /* 1-aX^2 */, _1_dX2[32] /* 1-aX^2 */;
|
||||
unsigned int _1_1_dX2[32] /* 1/(1-aX^2) */, Y2[32] /* Y^2 */, Y[32], Yt[32];
|
||||
|
||||
recip(Z, in->Z);
|
||||
|
||||
if (x) {
|
||||
mult(tmp, Z, in->X);
|
||||
mult(X, tmp, ed25519_to_legacy);
|
||||
freeze(X);
|
||||
for (i = 0; i < 32; i++)
|
||||
x->p[i] = X[i];
|
||||
}
|
||||
|
||||
if (y) {
|
||||
mult(Y, Z, in->Y);
|
||||
freeze(Y);
|
||||
for (i = 0; i < 32; i++)
|
||||
y->p[i] = Y[i];
|
||||
}
|
||||
}
|
||||
|
||||
void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) {
|
||||
ecc_25519_store_xy_legacy(x, y, in);
|
||||
}
|
||||
|
||||
|
||||
int ecc_25519_load_packed_ed25519(ecc_25519_work_t *out, const ecc_int256_t *in) {
|
||||
int i;
|
||||
uint32_t Y2[32] /* Y^2 */, dY2[32] /* dY^2 */, Y2_1[32] /* Y^2-1 */, dY2_1[32] /* dY^2+1 */, _1_dY2_1[32] /* 1/(dY^2+1) */;
|
||||
uint32_t X2[32] /* X^2 */, X[32], Xt[32];
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
out->X[i] = in->p[i];
|
||||
out->Y[i] = in->p[i];
|
||||
out->Z[i] = (i == 0);
|
||||
}
|
||||
|
||||
out->X[31] &= 0x7f;
|
||||
out->Y[31] &= 0x7f;
|
||||
|
||||
square(X2, out->X);
|
||||
mult_int(aX2, 486664, X2);
|
||||
mult_int(dX2, 486660, X2);
|
||||
square(Y2, out->Y);
|
||||
mult(dY2, d, Y2);
|
||||
sub(Y2_1, Y2, one);
|
||||
add(dY2_1, dY2, one);
|
||||
recip(_1_dY2_1, dY2_1);
|
||||
mult(X2, Y2_1, _1_dY2_1);
|
||||
|
||||
if (!square_root(X, X2))
|
||||
return 0;
|
||||
|
||||
/* No squeeze is necessary after subtractions from zero if the subtrahend is squeezed */
|
||||
sub(Xt, zero, X);
|
||||
|
||||
select(out->X, X, Xt, (in->p[31] >> 7) ^ parity(X));
|
||||
|
||||
mult(out->T, out->X, out->Y);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ecc_25519_load_packed_legacy(ecc_25519_work_t *out, const ecc_int256_t *in) {
|
||||
int i;
|
||||
uint32_t X2[32] /* X^2 */, aX2[32] /* aX^2 */, dX2[32] /* dX^2 */, _1_aX2[32] /* 1-aX^2 */, _1_dX2[32] /* 1-aX^2 */;
|
||||
uint32_t _1_1_dX2[32] /* 1/(1-aX^2) */, Y2[32] /* Y^2 */, Y[32], Yt[32], X_legacy[32];
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
X_legacy[i] = in->p[i];
|
||||
out->Z[i] = (i == 0);
|
||||
}
|
||||
|
||||
X_legacy[31] &= 0x7f;
|
||||
|
||||
square(X2, X_legacy);
|
||||
mult_int(aX2, UINT32_C(486664), X2);
|
||||
mult_int(dX2, UINT32_C(486660), X2);
|
||||
sub(_1_aX2, one, aX2);
|
||||
sub(_1_dX2, one, dX2);
|
||||
recip(_1_1_dX2, _1_dX2);
|
||||
|
@ -483,26 +726,43 @@ int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in) {
|
|||
if (!square_root(Y, Y2))
|
||||
return 0;
|
||||
|
||||
/* No squeeze is necessary after subtractions from zero if the subtrahend is squeezed */
|
||||
sub(Yt, zero, Y);
|
||||
|
||||
select(out->Y, Y, Yt, (in->p[31] >> 7) ^ (Y[0] & 1));
|
||||
select(out->Y, Y, Yt, (in->p[31] >> 7) ^ parity(Y));
|
||||
|
||||
mult(out->X, X_legacy, legacy_to_ed25519);
|
||||
mult(out->T, out->X, out->Y);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** Stores a point into its packed representation */
|
||||
void ecc_25519_store_packed(ecc_int256_t *out, const ecc_25519_work_t *in) {
|
||||
int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in) {
|
||||
return ecc_25519_load_packed_legacy(out, in);
|
||||
}
|
||||
|
||||
|
||||
void ecc_25519_store_packed_ed25519(ecc_int256_t *out, const ecc_25519_work_t *in) {
|
||||
ecc_int256_t x;
|
||||
|
||||
ecc_25519_store_xy_ed25519(&x, out, in);
|
||||
out->p[31] |= (x.p[0] << 7);
|
||||
}
|
||||
|
||||
void ecc_25519_store_packed_legacy(ecc_int256_t *out, const ecc_25519_work_t *in) {
|
||||
ecc_int256_t y;
|
||||
|
||||
ecc_25519_store_xy(out, &y, in);
|
||||
ecc_25519_store_xy_legacy(out, &y, in);
|
||||
out->p[31] |= (y.p[0] << 7);
|
||||
}
|
||||
|
||||
/** Checks if a point is the identity element of the Elliptic Curve group */
|
||||
void ecc_25519_store_packed(ecc_int256_t *out, const ecc_25519_work_t *in) {
|
||||
ecc_25519_store_packed_legacy(out, in);
|
||||
}
|
||||
|
||||
|
||||
int ecc_25519_is_identity(const ecc_25519_work_t *in) {
|
||||
unsigned int Y_Z[32];
|
||||
uint32_t Y_Z[32];
|
||||
|
||||
sub(Y_Z, in->Y, in->Z);
|
||||
squeeze(Y_Z);
|
||||
|
@ -510,71 +770,117 @@ int ecc_25519_is_identity(const ecc_25519_work_t *in) {
|
|||
return (check_zero(in->X)&check_zero(Y_Z));
|
||||
}
|
||||
|
||||
/**
|
||||
* Doubles a point of the Elliptic Curve
|
||||
*
|
||||
* ecc_25519_double(out, in) is equivalent to ecc_25519_add(out, in, in), but faster.
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
*/
|
||||
void ecc_25519_negate(ecc_25519_work_t *out, const ecc_25519_work_t *in) {
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
out->Y[i] = in->Y[i];
|
||||
out->Z[i] = in->Z[i];
|
||||
}
|
||||
|
||||
/* No squeeze is necessary after subtractions from zero if the subtrahend is squeezed */
|
||||
sub(out->X, zero, in->X);
|
||||
sub(out->T, zero, in->T);
|
||||
}
|
||||
|
||||
void ecc_25519_double(ecc_25519_work_t *out, const ecc_25519_work_t *in) {
|
||||
unsigned int A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32], t2[32], t3[32];
|
||||
uint32_t A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32];
|
||||
|
||||
square(A, in->X);
|
||||
|
||||
square(B, in->Y);
|
||||
|
||||
square(t0, in->Z);
|
||||
mult_int(C, 2, t0);
|
||||
mult_int(D, 486664, A);
|
||||
add(t1, in->X, in->Y);
|
||||
square(t2, t1);
|
||||
sub(t3, t2, A); squeeze(t3);
|
||||
sub(E, t3, B);
|
||||
add(G, D, B); squeeze(G);
|
||||
|
||||
sub(D, zero, A);
|
||||
|
||||
add(t0, in->X, in->Y);
|
||||
square(t1, t0);
|
||||
sub(t0, t1, A);
|
||||
sub(E, t0, B);
|
||||
|
||||
add(G, D, B);
|
||||
sub(F, G, C);
|
||||
sub(H, D, B);
|
||||
|
||||
mult(out->X, E, F);
|
||||
mult(out->Y, G, H);
|
||||
mult(out->T, E, H);
|
||||
mult(out->Z, F, G);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds two points of the Elliptic Curve
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
*/
|
||||
void ecc_25519_add(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2) {
|
||||
unsigned int A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32], t2[32], t3[32], t4[32], t5[32];
|
||||
const uint32_t j = UINT32_C(60833);
|
||||
const uint32_t k = UINT32_C(121665);
|
||||
uint32_t A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32];
|
||||
|
||||
mult(A, in1->X, in2->X);
|
||||
mult(B, in1->Y, in2->Y);
|
||||
mult_int(t0, 486660, in2->T);
|
||||
sub(t0, in1->Y, in1->X);
|
||||
mult_int(t1, j, t0);
|
||||
sub(t0, in2->Y, in2->X);
|
||||
mult(A, t0, t1);
|
||||
|
||||
add(t0, in1->Y, in1->X);
|
||||
mult_int(t1, j, t0);
|
||||
add(t0, in2->Y, in2->X);
|
||||
mult(B, t0, t1);
|
||||
|
||||
mult_int(t0, k, in2->T);
|
||||
mult(C, in1->T, t0);
|
||||
mult(D, in1->Z, in2->Z);
|
||||
add(t1, in1->X, in1->Y);
|
||||
add(t2, in2->X, in2->Y);
|
||||
mult(t3, t1, t2);
|
||||
sub(t4, t3, A); squeeze(t4);
|
||||
sub(E, t4, B);
|
||||
sub(F, D, C);
|
||||
add(G, D, C);
|
||||
mult_int(t5, 486664, A);
|
||||
sub(H, B, t5);
|
||||
|
||||
mult_int(t0, 2*j, in2->Z);
|
||||
mult(D, in1->Z, t0);
|
||||
|
||||
sub(E, B, A);
|
||||
add(F, D, C);
|
||||
sub(G, D, C);
|
||||
add(H, B, A);
|
||||
|
||||
mult(out->X, E, F);
|
||||
mult(out->Y, G, H);
|
||||
mult(out->T, E, H);
|
||||
mult(out->Z, F, G);
|
||||
}
|
||||
|
||||
/**
|
||||
* Does a scalar multiplication of a point of the Elliptic Curve with an integer of a given bit length
|
||||
*
|
||||
* To speed up scalar multiplication when it is known that not the whole 256 bits of the scalar
|
||||
* are used. The bit length should always be a constant and not computed at runtime to ensure
|
||||
* that no timing attacks are possible.
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
**/
|
||||
/** Adds two points of the Elliptic Curve, assuming that in2->Z == 1 */
|
||||
static void ecc_25519_add1(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2) {
|
||||
const uint32_t j = UINT32_C(60833);
|
||||
const uint32_t k = UINT32_C(121665);
|
||||
uint32_t A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32];
|
||||
|
||||
sub(t0, in1->Y, in1->X);
|
||||
mult_int(t1, j, t0);
|
||||
sub(t0, in2->Y, in2->X);
|
||||
mult(A, t0, t1);
|
||||
|
||||
add(t0, in1->Y, in1->X);
|
||||
mult_int(t1, j, t0);
|
||||
add(t0, in2->Y, in2->X);
|
||||
mult(B, t0, t1);
|
||||
|
||||
mult_int(t0, k, in2->T);
|
||||
mult(C, in1->T, t0);
|
||||
|
||||
mult_int(D, 2*j, in1->Z);
|
||||
|
||||
sub(E, B, A);
|
||||
add(F, D, C);
|
||||
sub(G, D, C);
|
||||
add(H, B, A);
|
||||
|
||||
mult(out->X, E, F);
|
||||
mult(out->Y, G, H);
|
||||
mult(out->T, E, H);
|
||||
mult(out->Z, F, G);
|
||||
}
|
||||
|
||||
void ecc_25519_sub(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2) {
|
||||
ecc_25519_work_t in2_neg;
|
||||
|
||||
ecc_25519_negate(&in2_neg, in2);
|
||||
ecc_25519_add(out, in1, &in2_neg);
|
||||
}
|
||||
|
||||
void ecc_25519_scalarmult_bits(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base, unsigned bits) {
|
||||
ecc_25519_work_t Q2, Q2p;
|
||||
ecc_25519_work_t cur = ecc_25519_work_identity;
|
||||
|
@ -595,31 +901,30 @@ void ecc_25519_scalarmult_bits(ecc_25519_work_t *out, const ecc_int256_t *n, con
|
|||
*out = cur;
|
||||
}
|
||||
|
||||
/**
|
||||
* Does a scalar multiplication of a point of the Elliptic Curve with an integer
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
**/
|
||||
void ecc_25519_scalarmult(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base) {
|
||||
ecc_25519_scalarmult_bits(out, n, base, 256);
|
||||
}
|
||||
|
||||
/**
|
||||
* Does a scalar multiplication of the default base point (generator element) of the Elliptic Curve with an integer of a given bit length
|
||||
*
|
||||
* The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
|
||||
*
|
||||
* See the notes about \ref ecc_25519_scalarmult_bits before using this function.
|
||||
*/
|
||||
void ecc_25519_scalarmult_base_bits(ecc_25519_work_t *out, const ecc_int256_t *n, unsigned bits) {
|
||||
ecc_25519_scalarmult_bits(out, n, &ecc_25519_work_default_base, bits);
|
||||
ecc_25519_work_t Q2, Q2p;
|
||||
ecc_25519_work_t cur = ecc_25519_work_identity;
|
||||
int b, pos;
|
||||
|
||||
if (bits > 256)
|
||||
bits = 256;
|
||||
|
||||
for (pos = bits - 1; pos >= 0; --pos) {
|
||||
b = n->p[pos / 8] >> (pos & 7);
|
||||
b &= 1;
|
||||
|
||||
ecc_25519_double(&Q2, &cur);
|
||||
ecc_25519_add1(&Q2p, &Q2, &ecc_25519_work_default_base);
|
||||
selectw(&cur, &Q2, &Q2p, b);
|
||||
}
|
||||
|
||||
*out = cur;
|
||||
}
|
||||
|
||||
/**
|
||||
* Does a scalar multiplication of the default base point (generator element) of the Elliptic Curve with an integer
|
||||
*
|
||||
* The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
|
||||
*/
|
||||
void ecc_25519_scalarmult_base(ecc_25519_work_t *out, const ecc_int256_t *n) {
|
||||
ecc_25519_scalarmult(out, n, &ecc_25519_work_default_base);
|
||||
ecc_25519_scalarmult_base_bits(out, n, 256);
|
||||
}
|
||||
|
|
|
@ -25,26 +25,23 @@
|
|||
*/
|
||||
|
||||
/** \file
|
||||
Simple finite field operations on the prime field \f$ F_q \f$ for
|
||||
\f$ q = 2^{252} + 27742317777372353535851937790883648493 \f$, which
|
||||
is the order of the base point used for ec25519
|
||||
*/
|
||||
* Simple finite field operations on the prime field \f$ F_q \f$ for
|
||||
* \f$ q = 2^{252} + 27742317777372353535851937790883648493 \f$, which
|
||||
* is the order of the base point used for ec25519
|
||||
*
|
||||
* Doxygen comments for public APIs can be found in the public header file.
|
||||
*/
|
||||
|
||||
#include <libuecc/ecc.h>
|
||||
|
||||
|
||||
/** Checks if the highest bit of an unsigned integer is set */
|
||||
/** Checks if the highest bit of an uint32_teger is set */
|
||||
#define IS_NEGATIVE(n) ((int)((((unsigned)n) >> (8*sizeof(n)-1))&1))
|
||||
|
||||
/** Performs an arithmetic right shift */
|
||||
#define ASR(n,s) (((n) >> s)|(IS_NEGATIVE(n)*((unsigned)-1) << (8*sizeof(n)-s)))
|
||||
|
||||
|
||||
/**
|
||||
* The order of the prime field
|
||||
*
|
||||
* The order is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
|
||||
*/
|
||||
const ecc_int256_t ecc_25519_gf_order = {{
|
||||
0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
|
||||
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
|
||||
|
@ -53,15 +50,15 @@ const ecc_int256_t ecc_25519_gf_order = {{
|
|||
}};
|
||||
|
||||
/** An internal alias for \ref ecc_25519_gf_order */
|
||||
static const unsigned char *q = ecc_25519_gf_order.p;
|
||||
static const uint8_t *q = ecc_25519_gf_order.p;
|
||||
|
||||
/**
|
||||
* Copies the content of r into out if b == 0, the contents of s if b == 1
|
||||
*/
|
||||
static void select(unsigned char out[32], const unsigned char r[32], const unsigned char s[32], unsigned int b) {
|
||||
static void select(uint8_t out[32], const uint8_t r[32], const uint8_t s[32], uint32_t b) {
|
||||
unsigned int j;
|
||||
unsigned int t;
|
||||
unsigned int bminus1;
|
||||
uint8_t t;
|
||||
uint8_t bminus1;
|
||||
|
||||
bminus1 = b - 1;
|
||||
for (j = 0;j < 32;++j) {
|
||||
|
@ -70,11 +67,10 @@ static void select(unsigned char out[32], const unsigned char r[32], const unsig
|
|||
}
|
||||
}
|
||||
|
||||
/** Checks if an integer is equal to zero (after reduction) */
|
||||
int ecc_25519_gf_is_zero(const ecc_int256_t *in) {
|
||||
int i;
|
||||
ecc_int256_t r;
|
||||
unsigned int bits = 0;
|
||||
uint32_t bits = 0;
|
||||
|
||||
ecc_25519_gf_reduce(&r, in);
|
||||
|
||||
|
@ -84,14 +80,9 @@ int ecc_25519_gf_is_zero(const ecc_int256_t *in) {
|
|||
return (((bits-1)>>8) & 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds two integers as Galois field elements
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_add(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2) {
|
||||
unsigned int j;
|
||||
unsigned int u;
|
||||
uint32_t u;
|
||||
int nq = 1 - (in1->p[31]>>4) - (in2->p[31]>>4);
|
||||
|
||||
u = 0;
|
||||
|
@ -103,14 +94,9 @@ void ecc_25519_gf_add(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int2
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtracts two integers as Galois field elements
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_sub(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2) {
|
||||
unsigned int j;
|
||||
unsigned int u;
|
||||
uint32_t u;
|
||||
int nq = 8 - (in1->p[31]>>4) + (in2->p[31]>>4);
|
||||
|
||||
u = 0;
|
||||
|
@ -123,11 +109,11 @@ void ecc_25519_gf_sub(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int2
|
|||
}
|
||||
|
||||
/** Reduces an integer to a unique representation in the range \f$ [0,q-1] \f$ */
|
||||
static void reduce(unsigned char a[32]) {
|
||||
static void reduce(uint8_t a[32]) {
|
||||
unsigned int j;
|
||||
unsigned int nq = a[31] >> 4;
|
||||
unsigned int u1, u2;
|
||||
unsigned char out1[32], out2[32];
|
||||
uint32_t nq = a[31] >> 4;
|
||||
uint32_t u1, u2;
|
||||
uint8_t out1[32], out2[32];
|
||||
|
||||
u1 = u2 = 0;
|
||||
for (j = 0; j < 31; ++j) {
|
||||
|
@ -145,11 +131,6 @@ static void reduce(unsigned char a[32]) {
|
|||
select(a, out1, out2, IS_NEGATIVE(u1));
|
||||
}
|
||||
|
||||
/**
|
||||
* Reduces an integer to a unique representation in the range \f$ [0,q-1] \f$
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_reduce(ecc_int256_t *out, const ecc_int256_t *in) {
|
||||
int i;
|
||||
|
||||
|
@ -160,10 +141,10 @@ void ecc_25519_gf_reduce(ecc_int256_t *out, const ecc_int256_t *in) {
|
|||
}
|
||||
|
||||
/** Montgomery modular multiplication algorithm */
|
||||
static void montgomery(unsigned char out[32], const unsigned char a[32], const unsigned char b[32]) {
|
||||
static void montgomery(uint8_t out[32], const uint8_t a[32], const uint8_t b[32]) {
|
||||
unsigned int i, j;
|
||||
unsigned int nq;
|
||||
unsigned int u;
|
||||
uint32_t nq;
|
||||
uint32_t u;
|
||||
|
||||
for (i = 0; i < 32; i++)
|
||||
out[i] = 0;
|
||||
|
@ -183,22 +164,17 @@ static void montgomery(unsigned char out[32], const unsigned char a[32], const u
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiplies two integers as Galois field elements
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_mult(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2) {
|
||||
/* 2^512 mod q */
|
||||
static const unsigned char C[32] = {
|
||||
static const uint8_t C[32] = {
|
||||
0x01, 0x0f, 0x9c, 0x44, 0xe3, 0x11, 0x06, 0xa4,
|
||||
0x47, 0x93, 0x85, 0x68, 0xa7, 0x1b, 0x0e, 0xd0,
|
||||
0x65, 0xbe, 0xf5, 0x17, 0xd2, 0x73, 0xec, 0xce,
|
||||
0x3d, 0x9a, 0x30, 0x7c, 0x1b, 0x41, 0x99, 0x03
|
||||
};
|
||||
|
||||
unsigned char B[32];
|
||||
unsigned char R[32];
|
||||
uint8_t B[32];
|
||||
uint8_t R[32];
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < 32; i++)
|
||||
|
@ -210,18 +186,13 @@ void ecc_25519_gf_mult(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int
|
|||
montgomery(out->p, R, C);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the reciprocal of a Galois field element
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_recip(ecc_int256_t *out, const ecc_int256_t *in) {
|
||||
static const unsigned char C[32] = {
|
||||
static const uint8_t C[32] = {
|
||||
0x01
|
||||
};
|
||||
|
||||
unsigned char A[32], B[32];
|
||||
unsigned char R1[32], R2[32];
|
||||
uint8_t A[32], B[32];
|
||||
uint8_t R1[32], R2[32];
|
||||
int use_r2 = 0;
|
||||
unsigned int i, j;
|
||||
|
||||
|
@ -233,7 +204,7 @@ void ecc_25519_gf_recip(ecc_int256_t *out, const ecc_int256_t *in) {
|
|||
reduce(A);
|
||||
|
||||
for (i = 0; i < 32; i++) {
|
||||
unsigned char c;
|
||||
uint8_t c;
|
||||
|
||||
if (i == 0)
|
||||
c = 0xeb; /* q[0] - 2 */
|
||||
|
@ -268,15 +239,6 @@ void ecc_25519_gf_recip(ecc_int256_t *out, const ecc_int256_t *in) {
|
|||
montgomery(out->p, R2, C);
|
||||
}
|
||||
|
||||
/**
|
||||
* Ensures some properties of a Galois field element to make it fit for use as a secret key
|
||||
*
|
||||
* This sets the 255th bit and clears the 256th and the bottom three bits (so the key
|
||||
* will be a multiple of 8). See Daniel J. Bernsteins paper "Curve25519: new Diffie-Hellman speed records."
|
||||
* for the rationale of this.
|
||||
*
|
||||
* The same pointers may be used for input and output.
|
||||
*/
|
||||
void ecc_25519_gf_sanitize_secret(ecc_int256_t *out, const ecc_int256_t *in) {
|
||||
int i;
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue