diff options
author | Matthias Schiffer <mschiffer@universe-factory.net> | 2012-03-17 15:15:02 +0100 |
---|---|---|
committer | Matthias Schiffer <mschiffer@universe-factory.net> | 2012-03-17 15:15:02 +0100 |
commit | 89d237f36b932dcacda031921bb961c24c3aa596 (patch) | |
tree | 71942aad09abc8860d2dbae8d41b2aa239ec3d98 /src/ec25519.c | |
parent | 3ea1ba496ece8d6e0e90b4b6f32b59ae62052cda (diff) | |
download | libuecc-89d237f36b932dcacda031921bb961c24c3aa596.tar libuecc-89d237f36b932dcacda031921bb961c24c3aa596.zip |
Switch from inverted to extended coordinate representation
In inverted coordinates there are 4 points that aren't representable correctly. Avoid this problem by using the extended coordinate representation, in which an add+double operation has essentially the same performance as in the inverted representation.
Diffstat (limited to 'src/ec25519.c')
-rw-r--r-- | src/ec25519.c | 146 |
1 files changed, 75 insertions, 71 deletions
diff --git a/src/ec25519.c b/src/ec25519.c index dfb806b..bfb49a0 100644 --- a/src/ec25519.c +++ b/src/ec25519.c @@ -33,7 +33,7 @@ The curve is equivalent to the Montgomery Curve used in D. J. Bernstein's Curve25519 Diffie-Hellman algorithm - See http://hyperelliptic.org/EFD/g1p/auto-twisted-inverted.html for add and + See http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html for add and double operations */ @@ -174,6 +174,9 @@ static void selectw(ecc_25519_work *out, const ecc_25519_work *r, const ecc_2551 t = bminus1 & (r->Z[j] ^ s->Z[j]); out->Z[j] = s->Z[j] ^ t; + + t = bminus1 & (r->T[j] ^ s->T[j]); + out->T[j] = s->T[j] ^ t; } } @@ -346,10 +349,11 @@ static void recip(unsigned int out[32], const unsigned int z[32]) { void ecc_25519_load(ecc_25519_work *out, const ecc_public_key_256 *in) { static const unsigned int zero[32] = {0}; + static const unsigned int one[32] = {1}; int i; - unsigned int X2[32], _1_a_X2[32], d_X2_a_X2[32], Y[32], Yt[32]; - unsigned int d_X2[32] = {0x04, 0x6d, 0x07} /* 486660 */, a_X2[32] = {0x08, 0x6d, 0x07} /* 486664 */; + unsigned int X2[32] /* X^2 */, aX2[32] /* aX^2 */, dX2[32] /* dX^2 */, _1_aX2[32] /* 1-aX^2 */, _1_dX2[32] /* 1-aX^2 */; + unsigned int _1_1_dX2[32] /* 1/(1-aX^2) */, Y2[32] /* Y^2 */, Y[32], Yt[32]; for (i = 0; i < 32; i++) { out->X[i] = in->p[i]; @@ -359,14 +363,18 @@ void ecc_25519_load(ecc_25519_work *out, const ecc_public_key_256 *in) { out->X[31] &= 0x7f; square(X2, out->X); - sub(d_X2, d_X2, X2); - sub(a_X2, a_X2, X2); - recip(_1_a_X2, a_X2); - mult(d_X2_a_X2, d_X2, _1_a_X2); - square_root(Y, d_X2_a_X2); + mult_int(aX2, 486664, X2); + mult_int(dX2, 486660, X2); + sub(_1_aX2, one, aX2); + sub(_1_dX2, one, dX2); + recip(_1_1_dX2, _1_dX2); + mult(Y2, _1_aX2, _1_1_dX2); + square_root(Y, Y2); sub(Yt, zero, Y); select(out->Y, Y, Yt, (in->p[31] >> 7) ^ (Y[0] & 1)); + + mult(out->T, out->X, out->Y); } void ecc_25519_store(ecc_public_key_256 *out, const ecc_25519_work *in) { @@ -387,69 +395,65 @@ void ecc_25519_store(ecc_public_key_256 *out, const ecc_25519_work *in) { out->p[31] |= (y[0] << 7); } -static const ecc_25519_work id = {{1}, {0}, {0}}; +static const ecc_25519_work id = {{0}, {1}, {1}, {0}}; int ecc_25519_is_identity(const ecc_25519_work *in) { - return (check_zero(in->X)|check_zero(in->Y)|check_zero(in->Z)); + unsigned int Y_Z[32]; + + sub(Y_Z, in->Y, in->Z); + squeeze(Y_Z); + + return (check_zero(in->X)&check_zero(Y_Z)); } void ecc_25519_double(ecc_25519_work *out, const ecc_25519_work *in) { - unsigned int A[32], B[32], C[32], D[32], E[32], U[32], t0[32], t1[32], t2[32], t3[32], t4[32], t5[32]; + unsigned int A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32], t2[32], t3[32]; square(A, in->X); square(B, in->Y); - mult_int(U, 486664, B); - add(C, A, U); - sub(D, A, U); - add(t0, in->X, in->Y); - square(t1, t0); - sub(t2, t1, A); - sub(E, t2, B); - mult(out->X, C, D); - square(t3, in->Z); - mult_int(t4, 973320, t3); - sub(t5, C, t4); - mult(out->Y, E, t5); - mult(out->Z, D, E); - selectw(out, out, &id, ecc_25519_is_identity(out)); + square(t0, in->Z); + mult_int(C, 2, t0); + mult_int(D, 486664, A); + add(t1, in->X, in->Y); + square(t2, t1); + sub(t3, t2, A); squeeze(t3); + sub(E, t3, B); + add(G, D, B); squeeze(G); + sub(F, G, C); + sub(H, D, B); + mult(out->X, E, F); + mult(out->Y, G, H); + mult(out->T, E, H); + mult(out->Z, F, G); } void ecc_25519_add(ecc_25519_work *out, const ecc_25519_work *in1, const ecc_25519_work *in2) { - unsigned int A[32], B[32], C[32], D[32], E[32], H[32], I[32], t0[32], t1[32], t2[32], t3[32], t4[32], t5[32], t6[32], t7[32], t8[32]; - int id1 = ecc_25519_is_identity(in1), id2 = ecc_25519_is_identity(in2); - - mult(A, in1->Z, in2->Z); - square(t0, A); - mult_int(B, 486660, t0); - mult(C, in1->X, in2->X); - mult(D, in1->Y, in2->Y); - mult(E, C, D); - mult_int(t1, 486664, D); - sub(H, C, t1); - add(t2, in1->X, in1->Y); - add(t3, in2->X, in2->Y); - mult(t4, t2, t3); - sub(t5, t4, C); - sub(I, t5, D); - add(t6, E, B); - mult(out->X, t6, H); - sub(t7, E, B); - mult(out->Y, t7, I); - mult(t8, H, I); - mult(out->Z, A, t8); - selectw(out, out, in1, id2); - selectw(out, out, in2, id1); + unsigned int A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32], t2[32], t3[32], t4[32], t5[32]; + + mult(A, in1->X, in2->X); + mult(B, in1->Y, in2->Y); + mult_int(t0, 486660, in2->T); + mult(C, in1->T, t0); + mult(D, in1->Z, in2->Z); + add(t1, in1->X, in1->Y); + add(t2, in2->X, in2->Y); + mult(t3, t1, t2); + sub(t4, t3, A); squeeze(t4); + sub(E, t4, B); + sub(F, D, C); + add(G, D, C); + mult_int(t5, 486664, A); + sub(H, B, t5); + mult(out->X, E, F); + mult(out->Y, G, H); + mult(out->T, E, H); + mult(out->Z, F, G); } void ecc_25519_scalarmult(ecc_25519_work *out, const ecc_secret_key_256 *n, const ecc_25519_work *base) { - ecc_25519_work Q2, Q2p, cur; - int i, b, pos; - - for (i = 0; i < 32; i++) { - cur.X[i] = 0; - cur.Y[i] = 0; - cur.Z[i] = (i == 0); - } + ecc_25519_work Q2, Q2p; + ecc_25519_work cur = id; + int b, pos; for (pos = 255; pos >= 0; --pos) { b = n->s[pos / 8] >> (pos & 7); @@ -460,23 +464,23 @@ void ecc_25519_scalarmult(ecc_25519_work *out, const ecc_secret_key_256 *n, cons selectw(&cur, &Q2, &Q2p, b); } - for (i = 0; i < 32; i++) { - out->X[i] = cur.X[i]; - out->Y[i] = cur.Y[i]; - out->Z[i] = cur.Z[i]; - } + *out = cur; } static const ecc_25519_work default_base = { - {0x51, 0x89, 0xfa, 0x46, 0xa0, 0xc0, 0x8b, 0x3d, - 0x30, 0x60, 0xf1, 0x7d, 0x2a, 0xec, 0xcd, 0xf3, - 0x24, 0x50, 0x96, 0x62, 0x21, 0xfc, 0xe6, 0x18, - 0x14, 0xd6, 0x11, 0xf8, 0x11, 0x91, 0xa1, 0x03}, - {0xf3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x5f}, - {1} + {0xd4, 0x6b, 0xfe, 0x7f, 0x39, 0xfa, 0x8c, 0x22, + 0xe1, 0x96, 0x23, 0xeb, 0x26, 0xb7, 0x8e, 0x6a, + 0x34, 0x74, 0x8b, 0x66, 0xd6, 0xa3, 0x26, 0xdd, + 0x19, 0x5e, 0x9f, 0x21, 0x50, 0x43, 0x7c, 0x54}, + {0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, + 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, + 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, + 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}, + {1}, + {0x47, 0x56, 0x98, 0x99, 0xc7, 0x61, 0x0a, 0x82, + 0x1a, 0xdf, 0x82, 0x22, 0x1f, 0x2c, 0x72, 0x88, + 0xc3, 0x29, 0x09, 0x52, 0x78, 0xe9, 0x1e, 0xe4, + 0x47, 0x4b, 0x4c, 0x81, 0xa6, 0x02, 0xfd, 0x29} }; void ecc_25519_scalarmult_base(ecc_25519_work *out, const ecc_secret_key_256 *n) { |