diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/CMakeLists.txt | 7 | ||||
-rw-r--r-- | src/ec25519.c | 456 |
2 files changed, 463 insertions, 0 deletions
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt new file mode 100644 index 0000000..1bad208 --- /dev/null +++ b/src/CMakeLists.txt @@ -0,0 +1,7 @@ +include_directories(${LIBUECC_SOURCE_DIR}/include) + +add_library(uecc STATIC ec25519.c) + +install(TARGETS uecc + ARCHIVE DESTINATION lib +) diff --git a/src/ec25519.c b/src/ec25519.c new file mode 100644 index 0000000..24c40f8 --- /dev/null +++ b/src/ec25519.c @@ -0,0 +1,456 @@ +/* + Copyright (c) 2012, Matthias Schiffer <mschiffer@universe-factory.net> + Partly based on public domain code by Matthew Dempsky and D. J. Bernstein. + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + 2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + +/* + EC group operations for Twisted Edwards Curve ax^2 + y^2 + 1 + dx^2y^2 with + a = 486664 + d = 486660 + on prime field p = 2^255 - 19. + + The curve is equivalent to the Montgomery Curve used in D. J. Bernstein's + Curve25519 Diffie-Hellman algorithm + + See http://hyperelliptic.org/EFD/g1p/auto-twisted-inverted.html for add and + double operations +*/ + +#include <libuecc/ecc.h> + + +static void add(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) { + unsigned int j; + unsigned int u; + u = 0; + for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; } + u += a[31] + b[31]; out[31] = u; +} + +static void sub(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) { + unsigned int j; + unsigned int u; + u = 218; + for (j = 0;j < 31;++j) { + u += a[j] + 65280 - b[j]; + out[j] = u & 255; + u >>= 8; + } + u += a[31] - b[31]; + out[31] = u; +} + +static void squeeze(unsigned int a[32]) { + unsigned int j; + unsigned int u; + u = 0; + for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } + u += a[31]; a[31] = u & 127; + u = 19 * (u >> 7); + for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } + u += a[31]; a[31] = u; +} + +static const unsigned int minusp[32] = { + 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128 +} ; + +static void freeze(unsigned int a[32]) { + unsigned int aorig[32]; + unsigned int j; + unsigned int negative; + + for (j = 0; j < 32; j++) aorig[j] = a[j]; + add(a, a, minusp); + negative = -((a[31] >> 7) & 1); + for (j = 0; j < 32; j++) a[j] ^= negative & (aorig[j] ^ a[j]); +} + +static void mult(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) { + unsigned int i; + unsigned int j; + unsigned int u; + + for (i = 0; i < 32; ++i) { + u = 0; + for (j = 0;j <= i;++j) u += a[j] * b[i - j]; + for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j]; + out[i] = u; + } + squeeze(out); +} + +static void mult_int(unsigned int out[32], const unsigned int n, const unsigned int a[32]) { + unsigned int j; + unsigned int u; + + u = 0; + for (j = 0;j < 31;++j) { u += n * a[j]; out[j] = u & 255; u >>= 8; } + u += n * a[31]; out[31] = u & 127; + u = 19 * (u >> 7); + for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; } + u += out[j]; out[j] = u; +} + +static void square(unsigned int out[32], const unsigned int a[32]) { + unsigned int i; + unsigned int j; + unsigned int u; + + for (i = 0; i < 32; ++i) { + u = 0; + for (j = 0;j < i - j;++j) u += a[j] * a[i - j]; + for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j]; + u *= 2; + if ((i & 1) == 0) { + u += a[i / 2] * a[i / 2]; + u += 38 * a[i / 2 + 16] * a[i / 2 + 16]; + } + out[i] = u; + } + squeeze(out); +} + +static int check_zero(const unsigned int x[32]) { + unsigned int differentbits = 0; + int i; + + for (i = 0; i < 32; i++) { + differentbits |= (x[i] & 0xffff); + differentbits |= (x[i] >> 16); + } + + return (1-(1 & ((differentbits - 1) >> 16))); +} + +static int check_equal(const unsigned int x[32], const unsigned int y[32]) { + unsigned int differentbits = 0; + int i; + + for (i = 0; i < 32; i++) { + differentbits |= ((x[i] ^ y[i]) & 0xffff); + differentbits |= ((x[i] ^ y[i]) >> 16); + } + + return (1-(1 & ((differentbits - 1) >> 16))); +} + +static void selectw(ec_25519_work *out, const ec_25519_work *r, const ec_25519_work *s, unsigned int b) { + unsigned int j; + unsigned int t; + unsigned int bminus1; + + bminus1 = b - 1; + for (j = 0;j < 32;++j) { + t = bminus1 & (r->X[j] ^ s->X[j]); + out->X[j] = s->X[j] ^ t; + + t = bminus1 & (r->Y[j] ^ s->Y[j]); + out->Y[j] = s->Y[j] ^ t; + + t = bminus1 & (r->Z[j] ^ s->Z[j]); + out->Z[j] = s->Z[j] ^ t; + } +} + +static void select(unsigned int out[32], const unsigned int r[32], const unsigned int s[32], unsigned int b) { + unsigned int j; + unsigned int t; + unsigned int bminus1; + + bminus1 = b - 1; + for (j = 0;j < 32;++j) { + t = bminus1 & (r[j] ^ s[j]); + out[j] = s[j] ^ t; + } +} + +static const unsigned int rho_s[32] = { + 0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4, + 0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f, + 0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b, + 0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b +}; + +static const unsigned int zero[32] = {0}; +static const unsigned int minus1[32] = { + 0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f +}; + +static void square_root(unsigned int out[32], const unsigned int z[32]) { + /* raise z to the (2^252-2)th power */ + + unsigned int z2[32]; + unsigned int z9[32]; + unsigned int z11[32]; + unsigned int z2_5_0[32]; + unsigned int z2_10_0[32]; + unsigned int z2_20_0[32]; + unsigned int z2_50_0[32]; + unsigned int z2_100_0[32]; + unsigned int t0[32]; + unsigned int t1[32]; + unsigned int rt_sq[32]; + int i; + + /* 2 */ square(z2, z); + /* 4 */ square(t1, z2); + /* 8 */ square(t0, t1); + /* 9 */ mult(z9, t0, z); + /* 11 */ mult(z11, z9, z2); + /* 22 */ square(t0, z11); + /* 2^5 - 2^0 = 31 */ mult(z2_5_0, t0, z9); + + /* 2^6 - 2^1 */ square(t0, z2_5_0); + /* 2^7 - 2^2 */ square(t1, t0); + /* 2^8 - 2^3 */ square(t0, t1); + /* 2^9 - 2^4 */ square(t1, t0); + /* 2^10 - 2^5 */ square(t0, t1); + /* 2^10 - 2^0 */ mult(z2_10_0, t0, z2_5_0); + + /* 2^11 - 2^1 */ square(t0, z2_10_0); + /* 2^12 - 2^2 */ square(t1, t0); + /* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t0, t1); square(t1, t0); } + /* 2^20 - 2^0 */ mult(z2_20_0, t1, z2_10_0); + + /* 2^21 - 2^1 */ square(t0, z2_20_0); + /* 2^22 - 2^2 */ square(t1, t0); + /* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { square(t0, t1); square(t1, t0); } + /* 2^40 - 2^0 */ mult(t0, t1, z2_20_0); + + /* 2^41 - 2^1 */ square(t1, t0); + /* 2^42 - 2^2 */ square(t0, t1); + /* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t1, t0); square(t0, t1); } + /* 2^50 - 2^0 */ mult(z2_50_0, t0, z2_10_0); + + /* 2^51 - 2^1 */ square(t0, z2_50_0); + /* 2^52 - 2^2 */ square(t1, t0); + /* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); } + /* 2^100 - 2^0 */ mult(z2_100_0, t1, z2_50_0); + + /* 2^101 - 2^1 */ square(t1, z2_100_0); + /* 2^102 - 2^2 */ square(t0, t1); + /* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { square(t1, t0); square(t0, t1); } + /* 2^200 - 2^0 */ mult(t1, t0, z2_100_0); + + /* 2^201 - 2^1 */ square(t0, t1); + /* 2^202 - 2^2 */ square(t1, t0); + /* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); } + /* 2^250 - 2^0 */ mult(t0, t1, z2_50_0); + + /* 2^251 - 2^1 */ square(t1, t0); + /* 2^252 - 2^2 */ square(t0, t1); + + /* 2^252 - 2 */ mult(t1, t0, z2); + + mult(t0, t1, rho_s); + + square(rt_sq, t1); + + select(out, t0, t1, check_equal(rt_sq, minus1)); +} + +static void recip(unsigned int out[32], const unsigned int z[32]) { + unsigned int z2[32]; + unsigned int z9[32]; + unsigned int z11[32]; + unsigned int z2_5_0[32]; + unsigned int z2_10_0[32]; + unsigned int z2_20_0[32]; + unsigned int z2_50_0[32]; + unsigned int z2_100_0[32]; + unsigned int t0[32]; + unsigned int t1[32]; + int i; + + /* 2 */ square(z2, z); + /* 4 */ square(t1, z2); + /* 8 */ square(t0, t1); + /* 9 */ mult(z9, t0, z); + /* 11 */ mult(z11, z9, z2); + /* 22 */ square(t0, z11); + /* 2^5 - 2^0 = 31 */ mult(z2_5_0, t0, z9); + + /* 2^6 - 2^1 */ square(t0, z2_5_0); + /* 2^7 - 2^2 */ square(t1, t0); + /* 2^8 - 2^3 */ square(t0, t1); + /* 2^9 - 2^4 */ square(t1, t0); + /* 2^10 - 2^5 */ square(t0, t1); + /* 2^10 - 2^0 */ mult(z2_10_0, t0, z2_5_0); + + /* 2^11 - 2^1 */ square(t0, z2_10_0); + /* 2^12 - 2^2 */ square(t1, t0); + /* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t0, t1); square(t1, t0); } + /* 2^20 - 2^0 */ mult(z2_20_0, t1, z2_10_0); + + /* 2^21 - 2^1 */ square(t0, z2_20_0); + /* 2^22 - 2^2 */ square(t1, t0); + /* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { square(t0, t1); square(t1, t0); } + /* 2^40 - 2^0 */ mult(t0, t1, z2_20_0); + + /* 2^41 - 2^1 */ square(t1, t0); + /* 2^42 - 2^2 */ square(t0, t1); + /* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t1, t0); square(t0, t1); } + /* 2^50 - 2^0 */ mult(z2_50_0, t0, z2_10_0); + + /* 2^51 - 2^1 */ square(t0, z2_50_0); + /* 2^52 - 2^2 */ square(t1, t0); + /* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); } + /* 2^100 - 2^0 */ mult(z2_100_0, t1, z2_50_0); + + /* 2^101 - 2^1 */ square(t1, z2_100_0); + /* 2^102 - 2^2 */ square(t0, t1); + /* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { square(t1, t0); square(t0, t1); } + /* 2^200 - 2^0 */ mult(t1, t0, z2_100_0); + + /* 2^201 - 2^1 */ square(t0, t1); + /* 2^202 - 2^2 */ square(t1, t0); + /* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); } + /* 2^250 - 2^0 */ mult(t0, t1, z2_50_0); + + /* 2^251 - 2^1 */ square(t1, t0); + /* 2^252 - 2^2 */ square(t0, t1); + /* 2^253 - 2^3 */ square(t1, t0); + /* 2^254 - 2^4 */ square(t0, t1); + /* 2^255 - 2^5 */ square(t1, t0); + /* 2^255 - 21 */ mult(out, t1, z11); +} + +void inflate(ec_25519_work *out, const ec_public_key_256 *in) { + int i; + unsigned int X2[32], d_X2[32] = {0x04, 0x6d, 0x07} /* 486660 */, a_X2[32] = {0x08, 0x6d, 0x07} /* 486664 */, _1_a_X2[32], d_X2_a_X2[32], Y[32], Yt[32]; + + for (i = 0; i < 32; i++) { + out->X[i] = in->p[i]; + out->Z[i] = (i == 0); + } + + out->X[31] &= 0x7f; + + square(X2, out->X); + sub(d_X2, d_X2, X2); + sub(a_X2, a_X2, X2); + recip(_1_a_X2, a_X2); + mult(d_X2_a_X2, d_X2, _1_a_X2); + square_root(Y, d_X2_a_X2); + sub(Yt, zero, Y); + + select(out->Y, Y, Yt, in->p[31] >> 7); +} + +void deflate(ec_public_key_256 *out, ec_25519_work *in) { + unsigned int x[32], y[32], z[32]; + int i; + + recip(z, in->Z); + + mult(x, z, in->X); + mult(y, z, in->Y); + + freeze(x); + freeze(y); + + for (i = 0; i < 32; i++) + out->p[i] = x[i]; + + out->p[31] |= (y[0] << 7); +} + +static const ec_25519_work infty = {{0}, {0}, {1}}; + +void ec25519_double(ec_25519_work *out, const ec_25519_work *in) { + unsigned int A[32], B[32], C[32], D[32], E[32], U[32], t0[32], t1[32], t2[32], t3[32], t4[32], t5[32]; + + square(A, in->X); + square(B, in->Y); + mult_int(U, 486664, B); + add(C, A, U); + sub(D, A, U); + add(t0, in->X, in->Y); + square(t1, t0); + sub(t2, t1, A); + sub(E, t2, B); + mult(out->X, C, D); + square(t3, in->Z); + mult_int(t4, 973320, t3); + sub(t5, C, t4); + mult(out->Y, E, t5); + mult(out->Z, D, E); + selectw(out, &infty, out, check_zero(out->X)*check_zero(out->Y)); +} + +void ec25519_add(ec_25519_work *out, const ec_25519_work *in1, const ec_25519_work *in2) { + unsigned int A[32], B[32], C[32], D[32], E[32], H[32], I[32], t0[32], t1[32], t2[32], t3[32], t4[32], t5[32], t6[32], t7[32], t8[32]; + + mult(A, in1->Z, in2->Z); + square(t0, A); + mult_int(B, 486660, t0); + mult(C, in1->X, in2->X); + mult(D, in1->Y, in2->Y); + mult(E, C, D); + mult_int(t1, 486664, D); + sub(H, C, t1); + add(t2, in1->X, in1->Y); + add(t3, in2->X, in2->Y); + mult(t4, t2, t3); + sub(t5, t4, C); + sub(I, t5, D); + add(t6, E, B); + mult(out->X, t6, H); + sub(t7, E, B); + mult(out->Y, t7, I); + mult(t8, H, I); + mult(out->Z, A, t8); + selectw(out, in1, out, check_zero(t3)); + selectw(out, in2, out, check_zero(t2)); +} + +void ec25519_scalarmult(ec_25519_work *out, const ec_secret_key_256 *n, const ec_25519_work *base) { + ec_25519_work Q2, Q2p, cur; + int i, b, pos; + + for (i = 0; i < 32; i++) { + cur.X[i] = 0; + cur.Y[i] = 0; + cur.Z[i] = (i == 0); + } + + for (pos = 254;pos >= 0;--pos) { + b = n->s[pos / 8] >> (pos & 7); + b &= 1; + + ec25519_double(&Q2, &cur); + ec25519_add(&Q2p, &Q2, base); + selectw(&cur, &Q2, &Q2p, b); + } + + for (i = 0; i < 32; i++) { + out->X[i] = cur.X[i]; + out->Y[i] = cur.Y[i]; + out->Z[i] = cur.Z[i]; + } +} |