1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
|
/*
Copyright (c) 2012-2015, Matthias Schiffer <mschiffer@universe-factory.net>
Partly based on public domain code by Matthew Dempsky and D. J. Bernstein.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* EC group operations for Twisted Edwards Curve \f$ ax^2 + y^2 = 1 + dx^2y^2 \f$ with
* \f$ a = 486664 \f$ and
* \f$ d = 486660 \f$
* on prime field \f$ p = 2^{255} - 19 \f$.
*
* The curve is equivalent to the Montgomery Curve used in D. J. Bernstein's
* Curve25519 Diffie-Hellman algorithm.
*
* See http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html for add and
* double operations.
*/
#include <libuecc/ecc.h>
/** The identity element */
const ecc_25519_work_t ecc_25519_work_identity = {{0}, {1}, {1}, {0}};
/** The ec25519 default base */
const ecc_25519_work_t ecc_25519_work_default_base = {
{0xd4, 0x6b, 0xfe, 0x7f, 0x39, 0xfa, 0x8c, 0x22,
0xe1, 0x96, 0x23, 0xeb, 0x26, 0xb7, 0x8e, 0x6a,
0x34, 0x74, 0x8b, 0x66, 0xd6, 0xa3, 0x26, 0xdd,
0x19, 0x5e, 0x9f, 0x21, 0x50, 0x43, 0x7c, 0x54},
{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66},
{1},
{0x47, 0x56, 0x98, 0x99, 0xc7, 0x61, 0x0a, 0x82,
0x1a, 0xdf, 0x82, 0x22, 0x1f, 0x2c, 0x72, 0x88,
0xc3, 0x29, 0x09, 0x52, 0x78, 0xe9, 0x1e, 0xe4,
0x47, 0x4b, 0x4c, 0x81, 0xa6, 0x02, 0xfd, 0x29}
};
static const unsigned int zero[32] = {0};
static const unsigned int one[32] = {1};
/** Adds two unpacked integers (modulo p) */
static void add(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) {
unsigned int j;
unsigned int u;
u = 0;
for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; }
u += a[31] + b[31]; out[31] = u;
}
/** Subtracts two unpacked integers (modulo p) */
static void sub(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) {
unsigned int j;
unsigned int u;
u = 218;
for (j = 0;j < 31;++j) {
u += a[j] + 65280 - b[j];
out[j] = u & 255;
u >>= 8;
}
u += a[31] - b[31];
out[31] = u;
}
/** Performs carry and reduce on an unpacked integer */
static void squeeze(unsigned int a[32]) {
unsigned int j;
unsigned int u;
u = 0;
for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; }
u += a[31]; a[31] = u & 127;
u = 19 * (u >> 7);
for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; }
u += a[31]; a[31] = u;
}
/**
* Ensures that the output of a previous \ref squeeze is fully reduced
*
* After a \ref freeze, only the lower byte of each integer part holds a meaningful value
*/
static void freeze(unsigned int a[32]) {
static const unsigned int minusp[32] = {
19, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 128
};
unsigned int aorig[32];
unsigned int j;
unsigned int negative;
for (j = 0; j < 32; j++) aorig[j] = a[j];
add(a, a, minusp);
negative = -((a[31] >> 7) & 1);
for (j = 0; j < 32; j++) a[j] ^= negative & (aorig[j] ^ a[j]);
}
/** Multiplies two unpacked integers (modulo p) */
static void mult(unsigned int out[32], const unsigned int a[32], const unsigned int b[32]) {
unsigned int i;
unsigned int j;
unsigned int u;
for (i = 0; i < 32; ++i) {
u = 0;
for (j = 0;j <= i;++j) u += a[j] * b[i - j];
for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j];
out[i] = u;
}
squeeze(out);
}
/** Multiplies an unpacked integer with a small integer (modulo p) */
static void mult_int(unsigned int out[32], unsigned int n, const unsigned int a[32]) {
unsigned int j;
unsigned int u;
u = 0;
for (j = 0;j < 31;++j) { u += n * a[j]; out[j] = u & 255; u >>= 8; }
u += n * a[31]; out[31] = u & 127;
u = 19 * (u >> 7);
for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; }
u += out[j]; out[j] = u;
}
/** Squares an unpacked integer */
static void square(unsigned int out[32], const unsigned int a[32]) {
unsigned int i;
unsigned int j;
unsigned int u;
for (i = 0; i < 32; ++i) {
u = 0;
for (j = 0;j < i - j;++j) u += a[j] * a[i - j];
for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j];
u *= 2;
if ((i & 1) == 0) {
u += a[i / 2] * a[i / 2];
u += 38 * a[i / 2 + 16] * a[i / 2 + 16];
}
out[i] = u;
}
squeeze(out);
}
/** Checks for the equality of two unpacked integers */
static int check_equal(const unsigned int x[32], const unsigned int y[32]) {
unsigned int differentbits = 0;
int i;
for (i = 0; i < 32; i++) {
differentbits |= ((x[i] ^ y[i]) & 0xffff);
differentbits |= ((x[i] ^ y[i]) >> 16);
}
return (1 & ((differentbits - 1) >> 16));
}
/**
* Checks if an unpacked integer equals zero
*
* The intergers must be must be \ref squeeze "squeezed" before.
*/
static int check_zero(const unsigned int x[32]) {
static const unsigned int p[32] = {
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f
};
return (check_equal(x, zero) | check_equal(x, p));
}
/** Copies r to out when b == 0, s when b == 1 */
static void selectw(ecc_25519_work_t *out, const ecc_25519_work_t *r, const ecc_25519_work_t *s, unsigned int b) {
unsigned int j;
unsigned int t;
unsigned int bminus1;
bminus1 = b - 1;
for (j = 0; j < 32; ++j) {
t = bminus1 & (r->X[j] ^ s->X[j]);
out->X[j] = s->X[j] ^ t;
t = bminus1 & (r->Y[j] ^ s->Y[j]);
out->Y[j] = s->Y[j] ^ t;
t = bminus1 & (r->Z[j] ^ s->Z[j]);
out->Z[j] = s->Z[j] ^ t;
t = bminus1 & (r->T[j] ^ s->T[j]);
out->T[j] = s->T[j] ^ t;
}
}
/** Copies r to out when b == 0, s when b == 1 */
static void select(unsigned int out[32], const unsigned int r[32], const unsigned int s[32], unsigned int b) {
unsigned int j;
unsigned int t;
unsigned int bminus1;
bminus1 = b - 1;
for (j = 0;j < 32;++j) {
t = bminus1 & (r[j] ^ s[j]);
out[j] = s[j] ^ t;
}
}
/**
* Computes the square root of an unpacked integer (in the prime field modulo p)
*
* If the given integer has no square root, 0 is returned, 1 otherwise.
*/
static int square_root(unsigned int out[32], const unsigned int z[32]) {
static const unsigned int minus1[32] = {
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f
};
static const unsigned int rho_s[32] = {
0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b
};
/* raise z to power (2^252-2), check if power (2^253-5) equals -1 */
unsigned int z2[32];
unsigned int z9[32];
unsigned int z11[32];
unsigned int z2_5_0[32];
unsigned int z2_10_0[32];
unsigned int z2_20_0[32];
unsigned int z2_50_0[32];
unsigned int z2_100_0[32];
unsigned int t0[32];
unsigned int t1[32];
unsigned int z2_252_1[32];
unsigned int z2_252_1_rho_s[32];
int i;
/* 2 */ square(z2, z);
/* 4 */ square(t1, z2);
/* 8 */ square(t0, t1);
/* 9 */ mult(z9, t0, z);
/* 11 */ mult(z11, z9, z2);
/* 22 */ square(t0, z11);
/* 2^5 - 2^0 = 31 */ mult(z2_5_0, t0, z9);
/* 2^6 - 2^1 */ square(t0, z2_5_0);
/* 2^7 - 2^2 */ square(t1, t0);
/* 2^8 - 2^3 */ square(t0, t1);
/* 2^9 - 2^4 */ square(t1, t0);
/* 2^10 - 2^5 */ square(t0, t1);
/* 2^10 - 2^0 */ mult(z2_10_0, t0, z2_5_0);
/* 2^11 - 2^1 */ square(t0, z2_10_0);
/* 2^12 - 2^2 */ square(t1, t0);
/* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^20 - 2^0 */ mult(z2_20_0, t1, z2_10_0);
/* 2^21 - 2^1 */ square(t0, z2_20_0);
/* 2^22 - 2^2 */ square(t1, t0);
/* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^40 - 2^0 */ mult(t0, t1, z2_20_0);
/* 2^41 - 2^1 */ square(t1, t0);
/* 2^42 - 2^2 */ square(t0, t1);
/* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t1, t0); square(t0, t1); }
/* 2^50 - 2^0 */ mult(z2_50_0, t0, z2_10_0);
/* 2^51 - 2^1 */ square(t0, z2_50_0);
/* 2^52 - 2^2 */ square(t1, t0);
/* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^100 - 2^0 */ mult(z2_100_0, t1, z2_50_0);
/* 2^101 - 2^1 */ square(t1, z2_100_0);
/* 2^102 - 2^2 */ square(t0, t1);
/* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { square(t1, t0); square(t0, t1); }
/* 2^200 - 2^0 */ mult(t1, t0, z2_100_0);
/* 2^201 - 2^1 */ square(t0, t1);
/* 2^202 - 2^2 */ square(t1, t0);
/* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^250 - 2^0 */ mult(t0, t1, z2_50_0);
/* 2^251 - 2^1 */ square(t1, t0);
/* 2^252 - 2^2 */ square(t0, t1);
/* 2^252 - 2^1 */ mult(z2_252_1, t0, z2);
/* 2^253 - 2^3 */ square(t1, t0);
/* 2^253 - 6 */ mult(t0, t1, z2);
/* 2^253 - 5 */ mult(t1, t0, z);
mult(z2_252_1_rho_s, z2_252_1, rho_s);
select(out, z2_252_1, z2_252_1_rho_s, check_equal(t1, minus1));
/* Check the root */
square(t0, out);
return check_equal(t0, z);
}
/** Computes the reciprocal of an unpacked integer (in the prime field modulo p) */
static void recip(unsigned int out[32], const unsigned int z[32]) {
unsigned int z2[32];
unsigned int z9[32];
unsigned int z11[32];
unsigned int z2_5_0[32];
unsigned int z2_10_0[32];
unsigned int z2_20_0[32];
unsigned int z2_50_0[32];
unsigned int z2_100_0[32];
unsigned int t0[32];
unsigned int t1[32];
int i;
/* 2 */ square(z2, z);
/* 4 */ square(t1, z2);
/* 8 */ square(t0, t1);
/* 9 */ mult(z9, t0, z);
/* 11 */ mult(z11, z9, z2);
/* 22 */ square(t0, z11);
/* 2^5 - 2^0 = 31 */ mult(z2_5_0, t0, z9);
/* 2^6 - 2^1 */ square(t0, z2_5_0);
/* 2^7 - 2^2 */ square(t1, t0);
/* 2^8 - 2^3 */ square(t0, t1);
/* 2^9 - 2^4 */ square(t1, t0);
/* 2^10 - 2^5 */ square(t0, t1);
/* 2^10 - 2^0 */ mult(z2_10_0, t0, z2_5_0);
/* 2^11 - 2^1 */ square(t0, z2_10_0);
/* 2^12 - 2^2 */ square(t1, t0);
/* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^20 - 2^0 */ mult(z2_20_0, t1, z2_10_0);
/* 2^21 - 2^1 */ square(t0, z2_20_0);
/* 2^22 - 2^2 */ square(t1, t0);
/* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^40 - 2^0 */ mult(t0, t1, z2_20_0);
/* 2^41 - 2^1 */ square(t1, t0);
/* 2^42 - 2^2 */ square(t0, t1);
/* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t1, t0); square(t0, t1); }
/* 2^50 - 2^0 */ mult(z2_50_0, t0, z2_10_0);
/* 2^51 - 2^1 */ square(t0, z2_50_0);
/* 2^52 - 2^2 */ square(t1, t0);
/* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^100 - 2^0 */ mult(z2_100_0, t1, z2_50_0);
/* 2^101 - 2^1 */ square(t1, z2_100_0);
/* 2^102 - 2^2 */ square(t0, t1);
/* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { square(t1, t0); square(t0, t1); }
/* 2^200 - 2^0 */ mult(t1, t0, z2_100_0);
/* 2^201 - 2^1 */ square(t0, t1);
/* 2^202 - 2^2 */ square(t1, t0);
/* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^250 - 2^0 */ mult(t0, t1, z2_50_0);
/* 2^251 - 2^1 */ square(t1, t0);
/* 2^252 - 2^2 */ square(t0, t1);
/* 2^253 - 2^3 */ square(t1, t0);
/* 2^254 - 2^4 */ square(t0, t1);
/* 2^255 - 2^5 */ square(t1, t0);
/* 2^255 - 21 */ mult(out, t1, z11);
}
/** Loads a point with given coordinates into its unpacked representation */
int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) {
int i;
unsigned int X2[32], Y2[32], aX2[32], dX2[32], dX2Y2[32], aX2_Y2[32], _1_dX2Y2[32], r[32];
for (i = 0; i < 32; i++) {
out->X[i] = x->p[i];
out->Y[i] = y->p[i];
out->Z[i] = (i == 0);
}
/* Check validity */
square(X2, out->X);
square(Y2, out->Y);
mult_int(aX2, 486664, X2);
mult_int(dX2, 486660, X2);
mult(dX2Y2, dX2, Y2);
add(aX2_Y2, aX2, Y2);
add(_1_dX2Y2, one, dX2Y2);
sub(r, aX2_Y2, _1_dX2Y2);
squeeze(r);
if (!check_zero(r))
return 0;
mult(out->T, out->X, out->Y);
return 1;
}
/**
* Stores a point's x and y coordinates
*
* \param x Returns the x coordinate of the point. May be NULL.
* \param y Returns the y coordinate of the point. May be NULL.
* \param in The unpacked point to store.
*/
void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) {
unsigned int X[32], Y[32], Z[32];
int i;
recip(Z, in->Z);
if (x) {
mult(X, Z, in->X);
freeze(X);
for (i = 0; i < 32; i++)
x->p[i] = X[i];
}
if (y) {
mult(Y, Z, in->Y);
freeze(Y);
for (i = 0; i < 32; i++)
y->p[i] = Y[i];
}
}
/** Loads a packed point into its unpacked representation */
int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in) {
int i;
unsigned int X2[32] /* X^2 */, aX2[32] /* aX^2 */, dX2[32] /* dX^2 */, _1_aX2[32] /* 1-aX^2 */, _1_dX2[32] /* 1-aX^2 */;
unsigned int _1_1_dX2[32] /* 1/(1-aX^2) */, Y2[32] /* Y^2 */, Y[32], Yt[32];
for (i = 0; i < 32; i++) {
out->X[i] = in->p[i];
out->Z[i] = (i == 0);
}
out->X[31] &= 0x7f;
square(X2, out->X);
mult_int(aX2, 486664, X2);
mult_int(dX2, 486660, X2);
sub(_1_aX2, one, aX2);
sub(_1_dX2, one, dX2);
recip(_1_1_dX2, _1_dX2);
mult(Y2, _1_aX2, _1_1_dX2);
if (!square_root(Y, Y2))
return 0;
sub(Yt, zero, Y);
select(out->Y, Y, Yt, (in->p[31] >> 7) ^ (Y[0] & 1));
mult(out->T, out->X, out->Y);
return 1;
}
/** Stores a point into its packed representation */
void ecc_25519_store_packed(ecc_int256_t *out, const ecc_25519_work_t *in) {
ecc_int256_t y;
ecc_25519_store_xy(out, &y, in);
out->p[31] |= (y.p[0] << 7);
}
/** Checks if a point is the identity element of the Elliptic Curve group */
int ecc_25519_is_identity(const ecc_25519_work_t *in) {
unsigned int Y_Z[32];
sub(Y_Z, in->Y, in->Z);
squeeze(Y_Z);
return (check_zero(in->X)&check_zero(Y_Z));
}
/**
* Doubles a point of the Elliptic Curve
*
* ecc_25519_double(out, in) is equivalent to ecc_25519_add(out, in, in), but faster.
*
* The same pointers may be used for input and output.
*/
void ecc_25519_double(ecc_25519_work_t *out, const ecc_25519_work_t *in) {
unsigned int A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32], t2[32], t3[32];
square(A, in->X);
square(B, in->Y);
square(t0, in->Z);
mult_int(C, 2, t0);
mult_int(D, 486664, A);
add(t1, in->X, in->Y);
square(t2, t1);
sub(t3, t2, A); squeeze(t3);
sub(E, t3, B);
add(G, D, B); squeeze(G);
sub(F, G, C);
sub(H, D, B);
mult(out->X, E, F);
mult(out->Y, G, H);
mult(out->T, E, H);
mult(out->Z, F, G);
}
/**
* Adds two points of the Elliptic Curve
*
* The same pointers may be used for input and output.
*/
void ecc_25519_add(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2) {
unsigned int A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32], t2[32], t3[32], t4[32], t5[32];
mult(A, in1->X, in2->X);
mult(B, in1->Y, in2->Y);
mult_int(t0, 486660, in2->T);
mult(C, in1->T, t0);
mult(D, in1->Z, in2->Z);
add(t1, in1->X, in1->Y);
add(t2, in2->X, in2->Y);
mult(t3, t1, t2);
sub(t4, t3, A); squeeze(t4);
sub(E, t4, B);
sub(F, D, C);
add(G, D, C);
mult_int(t5, 486664, A);
sub(H, B, t5);
mult(out->X, E, F);
mult(out->Y, G, H);
mult(out->T, E, H);
mult(out->Z, F, G);
}
/**
* Does a scalar multiplication of a point of the Elliptic Curve with an integer of a given bit length
*
* To speed up scalar multiplication when it is known that not the whole 256 bits of the scalar
* are used. The bit length should always be a constant and not computed at runtime to ensure
* that no timing attacks are possible.
*
* The same pointers may be used for input and output.
**/
void ecc_25519_scalarmult_bits(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base, unsigned bits) {
ecc_25519_work_t Q2, Q2p;
ecc_25519_work_t cur = ecc_25519_work_identity;
int b, pos;
if (bits > 256)
bits = 256;
for (pos = bits - 1; pos >= 0; --pos) {
b = n->p[pos / 8] >> (pos & 7);
b &= 1;
ecc_25519_double(&Q2, &cur);
ecc_25519_add(&Q2p, &Q2, base);
selectw(&cur, &Q2, &Q2p, b);
}
*out = cur;
}
/**
* Does a scalar multiplication of a point of the Elliptic Curve with an integer
*
* The same pointers may be used for input and output.
**/
void ecc_25519_scalarmult(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base) {
ecc_25519_scalarmult_bits(out, n, base, 256);
}
/**
* Does a scalar multiplication of the default base point (generator element) of the Elliptic Curve with an integer of a given bit length
*
* The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
*
* See the notes about \ref ecc_25519_scalarmult_bits before using this function.
*/
void ecc_25519_scalarmult_base_bits(ecc_25519_work_t *out, const ecc_int256_t *n, unsigned bits) {
ecc_25519_scalarmult_bits(out, n, &ecc_25519_work_default_base, bits);
}
/**
* Does a scalar multiplication of the default base point (generator element) of the Elliptic Curve with an integer
*
* The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$.
*/
void ecc_25519_scalarmult_base(ecc_25519_work_t *out, const ecc_int256_t *n) {
ecc_25519_scalarmult(out, n, &ecc_25519_work_default_base);
}
|