{-# OPTIONS -fglasgow-exts #-} ----------------------------------------------------------------------------- -- | -- Module : Operations.hs -- Copyright : (c) Spencer Janssen 2007 -- License : BSD3-style (see LICENSE) -- -- Maintainer : dons@cse.unsw.edu.au -- Stability : unstable -- Portability : not portable, mtl, posix -- ----------------------------------------------------------------------------- module Operations where import XMonad import qualified StackSet as W import {-# SOURCE #-} Config (borderWidth, modMask) import Data.Maybe import Data.List (genericIndex, intersectBy, partition, delete) import Data.Bits ((.|.)) import Data.Ratio import qualified Data.Map as M -- import System.Mem (performGC) import Control.Monad.State import Control.Monad.Reader import Control.Arrow import Graphics.X11.Xlib import Graphics.X11.Xinerama (getScreenInfo) import Graphics.X11.Xlib.Extras -- --------------------------------------------------------------------- -- Window manager operations -- | manage. Add a new window to be managed in the current workspace. -- Bring it into focus. If the window is already managed, nothing happens. -- manage :: Window -> X () manage w = withDisplay $ \d -> do io $ selectInput d w $ structureNotifyMask .|. enterWindowMask .|. propertyChangeMask io $ mapWindow d w io $ setWindowBorderWidth d w borderWidth -- FIXME: This is pretty awkward. We can't can't let "refresh" happen -- before the call to float, because that will resize the window and -- lose the default sizing. isTransient <- isJust `liftM` io (getTransientForHint d w) if isTransient then do modify $ \s -> s { windowset = W.insertUp w (windowset s) } float w -- ^^ now go the refresh. else windows $ W.insertUp w -- | unmanage. A window no longer exists, remove it from the window -- list, on whatever workspace it is. -- -- FIXME: clearFloating should be taken care of in W.delete, but if we do it -- there, floating status is lost when moving windows between workspaces, -- because W.shift calls W.delete. unmanage :: Window -> X () unmanage w = windows $ W.sink w . W.delete w -- | focus. focus window up or down. or swap various windows. focusUp, focusDown, swapUp, swapDown, swapMaster :: X () focusUp = windows W.focusUp focusDown = windows W.focusDown swapUp = windows W.swapUp swapDown = windows W.swapDown swapMaster = windows W.swapMaster -- | shift. Move a window to a new workspace, 0 indexed. shift :: WorkspaceId -> X () shift n = withFocused hide >> windows (W.shift n) -- refresh will raise it if we didn't need to move it. -- | view. Change the current workspace to workspace at offset n (0 indexed). view :: WorkspaceId -> X () view = windows . W.view -- | Modify the size of the status gap at the top of the current screen -- Taking a function giving the current screen, and current geometry. modifyGap :: (Int -> (Int,Int,Int,Int) -> (Int,Int,Int,Int)) -> X () modifyGap f = do XState { windowset = ws, statusGaps = gaps } <- get let n = fromIntegral $ W.screen (W.current ws) (a,i:b) = splitAt n gaps modify $ \s -> s { statusGaps = a ++ f n i : b } refresh -- | Kill the currently focused client. If we do kill it, we'll get a -- delete notify back from X. -- -- There are two ways to delete a window. Either just kill it, or if it -- supports the delete protocol, send a delete event (e.g. firefox) -- kill :: X () kill = withDisplay $ \d -> withFocused $ \w -> do XConf {wmdelete = wmdelt, wmprotocols = wmprot} <- ask protocols <- io $ getWMProtocols d w io $ if wmdelt `elem` protocols then allocaXEvent $ \ev -> do setEventType ev clientMessage setClientMessageEvent ev w wmprot 32 wmdelt 0 sendEvent d w False noEventMask ev else killClient d w >> return () -- --------------------------------------------------------------------- -- Managing windows -- | windows. Modify the current window list with a pure function, and refresh windows :: (WindowSet -> WindowSet) -> X () windows f = do old <- gets windowset let new = f old modify (\s -> s { windowset = new }) refresh -- We now go to some effort to compute the minimal set of windows to hide. -- The minimal set being only those windows which weren't previously hidden, -- which is the intersection of previously visible windows with those now hidden mapM_ hide . concatMap (integrate . W.stack) $ intersectBy (\w x -> W.tag w == W.tag x) (map W.workspace $ W.current old : W.visible old) (W.hidden new) clearEnterEvents -- TODO: move this into StackSet. This isn't exactly the usual integrate. where integrate W.Empty = [] integrate (W.Node x l r) = x : l ++ r -- | hide. Hide a window by moving it off screen. hide :: Window -> X () hide w = withDisplay $ \d -> do (sw,sh) <- gets dimensions io $ moveWindow d w sw sh -- | refresh. Render the currently visible workspaces, as determined by -- the StackSet. Also, set focus to the focused window. -- -- This is our 'view' operation (MVC), in that it pretty prints our model -- with X calls. -- refresh :: X () refresh = do XState { windowset = ws, layouts = fls, xineScreens = xinesc, statusGaps = gaps } <- get d <- asks display -- for each workspace, layout the currently visible workspaces (`mapM_` (W.current ws : W.visible ws)) $ \w -> do let n = W.tag (W.workspace w) this = W.view n ws Just l = fmap fst $ M.lookup n fls (flt, tiled) = partition (flip M.member (W.floating ws)) (W.index this) (Rectangle sx sy sw sh) = genericIndex xinesc (W.screen w) (gt,gb,gl,gr) = genericIndex gaps (W.screen w) -- just the tiled windows: -- now tile the windows on this workspace, modified by the gap rs <- doLayout l (Rectangle (sx + fromIntegral gl) (sy + fromIntegral gt) (sw - fromIntegral (gl + gr)) (sh - fromIntegral (gt + gb))) tiled mapM_ (\(win,rect) -> io (tileWindow d win rect)) rs -- now the floating windows: -- move/resize the floating windows, if there are any (`mapM_` flt) $ \fw -> whenJust (M.lookup fw (W.floating ws)) $ \(W.RationalRect rx ry rw rh) -> do let Rectangle px py pw ph = genericIndex xinesc (W.screen w) io $ tileWindow d fw (Rectangle (px + floor (toRational pw*rx)) (py + floor (toRational ph*ry)) (floor (toRational pw*rw)) (floor (toRational ph*rh))) -- TODO seems fishy? -- Urgh. This is required because the fullscreen layout assumes that -- the focused window will be raised. Hmm. This is a reordering. let tiled' = case W.peek this of Just x | x `elem` tiled -> x : delete x tiled _ -> tiled io $ restackWindows d (flt ++ tiled') setTopFocus clearEnterEvents -- io performGC -- really helps -- | clearEnterEvents. Remove all window entry events from the event queue. clearEnterEvents :: X () clearEnterEvents = withDisplay $ \d -> io $ do sync d False allocaXEvent $ \p -> fix $ \again -> do more <- checkMaskEvent d enterWindowMask p when more again -- beautiful -- | tileWindow. Moves and resizes w such that it fits inside the given -- rectangle, including its border. tileWindow :: Display -> Window -> Rectangle -> IO () tileWindow d w r = do bw <- (fromIntegral . wa_border_width) `liftM` getWindowAttributes d w moveResizeWindow d w (rect_x r) (rect_y r) (rect_width r - bw*2) (rect_height r - bw*2) -- --------------------------------------------------------------------- -- | rescreen. The screen configuration may have changed (due to -- xrandr), update the state and refresh the screen, and reset the gap. rescreen :: X () rescreen = do xinesc <- withDisplay (io . getScreenInfo) -- TODO: This stuff is necessary because Xlib apparently caches screen -- width/height. Find a better solution later. I hate Xlib. let sx = maximum $ map (\r -> rect_x r + fromIntegral (rect_width r)) xinesc sy = maximum $ map (\r -> rect_y r + fromIntegral (rect_height r)) xinesc modify (\s -> s { xineScreens = xinesc , dimensions = (sx, sy) , statusGaps = take (length xinesc) $ (statusGaps s) ++ repeat (0,0,0,0) }) windows $ \ws@(W.StackSet { W.current = v, W.visible = vs, W.hidden = hs }) -> let (x:xs, ys) = splitAt (length xinesc) $ map W.workspace (v:vs) ++ hs in ws { W.current = W.Screen x 0 , W.visible = zipWith W.Screen xs [1 ..] , W.hidden = ys } -- --------------------------------------------------------------------- -- | setButtonGrab. Tell whether or not to intercept clicks on a given window setButtonGrab :: Bool -> Window -> X () setButtonGrab grab w = withDisplay $ \d -> io $ do when (not grab) $ ungrabButton d anyButton anyModifier w grabButton d anyButton mask w False (buttonPressMask .|. buttonReleaseMask) grabModeAsync grabModeSync none none where mask = if grab then anyModifier else modMask -- --------------------------------------------------------------------- -- Setting keyboard focus -- | Set the focus to the window on top of the stack, or root setTopFocus :: X () setTopFocus = withWorkspace $ maybe (setFocusX =<< asks theRoot) setFocusX . W.peek -- | Set focus explicitly to window 'w' if it is managed by us, or root. -- This happens if X notices we've moved the mouse (and perhaps moved -- the mouse to a new screen). focus :: Window -> X () focus w = withWorkspace $ \s -> do if W.member w s then modify (\st -> st { windowset = W.focusWindow w s }) >> setFocusX w -- >> refresh else whenX (isRoot w) $ setFocusX w -- we could refresh here, moving gap too. -- XXX a focus change could be caused by switching workspaces in xinerama. -- if so, and the gap is in use, the gap should probably follow the -- cursor to the new screen. -- -- to get the gap though, you need to trigger a refresh. -- | Call X to set the keyboard focus details. setFocusX :: Window -> X () setFocusX w = withWorkspace $ \ws -> do XConf { display = dpy , normalBorder = nbc, focusedBorder = fbc } <- ask -- clear mouse button grab and border on other windows (`mapM_` (W.current ws : W.visible ws)) $ \wk -> do (`mapM_` (W.index (W.view (W.tag (W.workspace wk)) ws))) $ \otherw -> do setButtonGrab True otherw io $ setWindowBorder dpy otherw (color_pixel nbc) whenX (not `liftM` isRoot w) $ do io $ do setInputFocus dpy w revertToPointerRoot 0 -- raiseWindow dpy w setButtonGrab False w io $ setWindowBorder dpy w (color_pixel fbc) -- --------------------------------------------------------------------- -- Managing layout -- | switchLayout. Switch to another layout scheme. Switches the -- layout of the current workspace. By convention, a window set as -- master in Tall mode remains as master in Wide mode. When switching -- from full screen to a tiling mode, the currently focused window -- becomes a master. When switching back , the focused window is -- uppermost. -- switchLayout :: X () switchLayout = layout (\(x, xs) -> let xs' = xs ++ [x] in (head xs', tail xs')) -- | Throw an (extensible) message value to the current Layout scheme, -- possibly modifying how we layout the windows, then refresh. -- -- TODO, this will refresh on Nothing. -- sendMessage :: Message a => a -> X () sendMessage a = layout $ \x@(l, ls) -> maybe x (flip (,) ls) (modifyLayout l (SomeMessage a)) -- -- Builtin layout algorithms: -- -- fullscreen mode -- tall mode -- wide mode -- -- The latter algorithms support the following operations: -- -- Shrink -- Expand -- data Resize = Shrink | Expand deriving Typeable instance Message Resize data IncMasterN = IncMasterN Int deriving Typeable instance Message IncMasterN full :: Layout full = Layout { doLayout = \sc ws -> return [ (w,sc) | w <- ws ] , modifyLayout = const Nothing } -- no changes tall, wide :: Int -> Rational -> Rational -> Layout wide nmaster delta frac = mirrorLayout (tall nmaster delta frac) tall nmaster delta frac = Layout { doLayout = \r -> return . ap zip (tile frac r nmaster . length) , modifyLayout = \m -> fmap resize (fromMessage m) `mplus` fmap incmastern (fromMessage m) } where resize Shrink = tall nmaster delta (frac-delta) resize Expand = tall nmaster delta (frac+delta) incmastern (IncMasterN d) = tall (max 1 (nmaster+d)) delta frac -- | Mirror a rectangle mirrorRect :: Rectangle -> Rectangle mirrorRect (Rectangle rx ry rw rh) = (Rectangle ry rx rh rw) -- | Mirror a layout mirrorLayout :: Layout -> Layout mirrorLayout (Layout { doLayout = dl, modifyLayout = ml }) = Layout { doLayout = \sc w -> map (second mirrorRect) `fmap` dl (mirrorRect sc) w , modifyLayout = fmap mirrorLayout . ml } -- | tile. Compute the positions for windows in our default tiling modes -- Tiling algorithms in the core should satisify the constraint that -- -- * no windows overlap -- * no gaps exist between windows. -- tile :: Rational -> Rectangle -> Int -> Int -> [Rectangle] tile f r nmaster n | n <= nmaster = splitVertically n r | otherwise = splitVertically nmaster r1 ++ splitVertically (n-nmaster) r2 where (r1,r2) = splitHorizontallyBy f r splitVertically, splitHorizontally :: Int -> Rectangle -> [Rectangle] splitVertically n r | n < 2 = [r] splitVertically n (Rectangle sx sy sw sh) = Rectangle sx sy sw smallh : splitVertically (n-1) (Rectangle sx (sy+fromIntegral smallh) sw (sh-smallh)) where smallh = sh `div` fromIntegral n splitHorizontally n r = map mirrorRect $ splitVertically n $ mirrorRect r splitHorizontallyBy, splitVerticallyBy :: Rational -> Rectangle -> (Rectangle, Rectangle) splitHorizontallyBy f (Rectangle sx sy sw sh) = (Rectangle sx sy leftw sh, Rectangle (sx + fromIntegral leftw) sy (sw-fromIntegral leftw) sh) where leftw = floor $ fromIntegral sw * f splitVerticallyBy f r = (\(a,b)->(mirrorRect a,mirrorRect b)) $ splitHorizontallyBy f $ mirrorRect r ------------------------------------------------------------------------ -- | layout. Modify the current workspace's layout with a pure -- function and refresh. layout :: ((Layout, [Layout]) -> (Layout, [Layout])) -> X () layout f = do modify $ \s -> let n = W.tag . W.workspace . W.current . windowset $ s (Just fl) = M.lookup n $ layouts s in s { layouts = M.insert n (f fl) (layouts s) } refresh ------------------------------------------------------------------------ -- Utilities -- | Return workspace visible on screen 'sc', or 0. screenWorkspace :: ScreenId -> X WorkspaceId screenWorkspace sc = withWorkspace $ return . fromMaybe 0 . W.lookupWorkspace sc -- | Apply an X operation to the currently focused window, if there is one. withFocused :: (Window -> X ()) -> X () withFocused f = withWorkspace $ \w -> whenJust (W.peek w) f -- | True if window is under management by us isClient :: Window -> X Bool isClient w = withWorkspace $ return . W.member w ------------------------------------------------------------------------ -- | Floating layer support -- | Make a floating window tiled sink :: Window -> X () sink = windows . W.sink -- | Make a tiled window floating, using its suggested rectangle float :: Window -> X () float w = withDisplay $ \d -> do xinesc <- gets xineScreens sc <- (genericIndex xinesc . W.screen . W.current) `liftM` gets windowset wa <- io $ getWindowAttributes d w let bw = fi . wa_border_width $ wa windows $ W.float w (W.RationalRect ((fi (wa_x wa) - fi (rect_x sc)) % fi (rect_width sc)) ((fi (wa_y wa) - fi (rect_y sc)) % fi (rect_height sc)) (fi (wa_width wa + bw*2) % fi (rect_width sc)) (fi (wa_height wa + bw*2) % fi (rect_height sc))) where fi x = fromIntegral x -- | Toggle floating bit -- -- TODO not useful unless we remember the original size -- -- toggleFloating :: Window -> X () -- toggleFloating w = gets windowset >>= \ws -> if M.member w (W.floating ws) then sink w else float w