Restructure crates

Get rid of the arbitrary bin/lib split and instead move as much as
possible into the bin crate, which becomes the main crate again.

The types and NBT handling are moved into separate crates, so they can
be reused by nbtdump and regiondump.
This commit is contained in:
Matthias Schiffer 2023-08-20 16:28:10 +02:00
parent 09399f5ae9
commit 248a641035
Signed by: neocturne
GPG key ID: 16EF3F64CB201D9C
21 changed files with 121 additions and 62 deletions

10
crates/types/Cargo.toml Normal file
View file

@ -0,0 +1,10 @@
[package]
name = "minedmap-types"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
itertools = "0.11.0"
serde = "1.0.183"

238
crates/types/src/lib.rs Normal file
View file

@ -0,0 +1,238 @@
//! Common types used by MinedMap
#![warn(missing_docs)]
#![warn(clippy::missing_docs_in_private_items)]
use std::{
fmt::Debug,
iter::FusedIterator,
ops::{Index, IndexMut},
};
use itertools::iproduct;
use serde::{Deserialize, Serialize};
/// Const generic AXIS arguments for coordinate types
pub mod axis {
/// The X axis
pub const X: u8 = 0;
/// The Y axis (height)
pub const Y: u8 = 1;
/// The Z axis
pub const Z: u8 = 2;
}
/// Generates a generic coordinate type with a given range
macro_rules! coord_type {
($t:ident, $max:expr, $doc:expr $(,)?) => {
#[doc = $doc]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct $t<const AXIS: u8>(pub u8);
impl<const AXIS: u8> $t<AXIS> {
const MAX: usize = $max;
/// Constructs a new value
///
/// Will panic if the value is not in the valid range
#[inline]
pub fn new<T: TryInto<u8>>(value: T) -> Self {
Self(
value
.try_into()
.ok()
.filter(|&v| (v as usize) < Self::MAX)
.expect("coordinate should be in the valid range"),
)
}
/// Returns an iterator over all possible values of the type
#[inline]
pub fn iter() -> impl Iterator<Item = $t<AXIS>>
+ DoubleEndedIterator
+ ExactSizeIterator
+ FusedIterator
+ Clone
+ Debug {
(0..Self::MAX as u8).map($t)
}
}
};
}
/// Number of bits required to store a block coordinate
pub const BLOCK_BITS: u8 = 4;
/// Number of blocks per chunk in each dimension
pub const BLOCKS_PER_CHUNK: usize = 1 << BLOCK_BITS;
coord_type!(
BlockCoord,
BLOCKS_PER_CHUNK,
"A block coordinate relative to a chunk",
);
/// A block X coordinate relative to a chunk
pub type BlockX = BlockCoord<{ axis::X }>;
/// A block Y coordinate relative to a chunk section
pub type BlockY = BlockCoord<{ axis::Y }>;
/// A block Z coordinate relative to a chunk
pub type BlockZ = BlockCoord<{ axis::Z }>;
/// X and Z coordinates of a block in a chunk
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct LayerBlockCoords {
/// The X coordinate
pub x: BlockX,
/// The Z coordinate
pub z: BlockZ,
}
impl Debug for LayerBlockCoords {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "({}, {})", self.x.0, self.z.0)
}
}
impl LayerBlockCoords {
/// Computes a block's offset in various data structures
///
/// Many chunk data structures store block and biome data in the same
/// order. This method computes the offset at which the data for the
/// block at a given coordinate is stored.
#[inline]
pub fn offset(&self) -> usize {
use BLOCKS_PER_CHUNK as N;
let x = self.x.0 as usize;
let z = self.z.0 as usize;
N * z + x
}
}
/// Generic array for data stored per block of a chunk layer
///
/// Includes various convenient iteration functions.
#[derive(Debug, Clone, Copy, Default, Serialize, Deserialize)]
pub struct LayerBlockArray<T>(pub [[T; BLOCKS_PER_CHUNK]; BLOCKS_PER_CHUNK]);
impl<T> Index<LayerBlockCoords> for LayerBlockArray<T> {
type Output = T;
#[inline]
fn index(&self, index: LayerBlockCoords) -> &Self::Output {
&self.0[index.z.0 as usize][index.x.0 as usize]
}
}
impl<T> IndexMut<LayerBlockCoords> for LayerBlockArray<T> {
#[inline]
fn index_mut(&mut self, index: LayerBlockCoords) -> &mut Self::Output {
&mut self.0[index.z.0 as usize][index.x.0 as usize]
}
}
/// X, Y and Z coordinates of a block in a chunk section
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct SectionBlockCoords {
/// The X and Z coordinates
pub xz: LayerBlockCoords,
/// The Y coordinate
pub y: BlockY,
}
impl SectionBlockCoords {
/// Computes a block's offset in various data structures
///
/// Many chunk data structures store block and biome data in the same
/// order. This method computes the offset at which the data for the
/// block at a given coordinate is stored.
#[inline]
pub fn offset(&self) -> usize {
use BLOCKS_PER_CHUNK as N;
let y = self.y.0 as usize;
N * N * y + self.xz.offset()
}
}
impl Debug for SectionBlockCoords {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "({}, {}, {})", self.xz.x.0, self.y.0, self.xz.z.0)
}
}
/// A section Y coordinate
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct SectionY(pub i32);
/// Number of bits required to store a chunk coordinate
pub const CHUNK_BITS: u8 = 5;
/// Number of chunks per region in each dimension
pub const CHUNKS_PER_REGION: usize = 1 << CHUNK_BITS;
coord_type!(
ChunkCoord,
CHUNKS_PER_REGION,
"A chunk coordinate relative to a region",
);
/// A chunk X coordinate relative to a region
pub type ChunkX = ChunkCoord<{ axis::X }>;
/// A chunk Z coordinate relative to a region
pub type ChunkZ = ChunkCoord<{ axis::Z }>;
/// A pair of chunk coordinates relative to a region
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ChunkCoords {
/// The X coordinate
pub x: ChunkX,
/// The Z coordinate
pub z: ChunkZ,
}
impl Debug for ChunkCoords {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "({}, {})", self.x.0, self.z.0)
}
}
/// Generic array for data stored per chunk of a region
///
/// Includes various convenient iteration functions.
#[derive(Debug, Clone, Copy, Default, Serialize, Deserialize)]
pub struct ChunkArray<T>(pub [[T; CHUNKS_PER_REGION]; CHUNKS_PER_REGION]);
impl<T> ChunkArray<T> {
/// Iterates over all possible chunk coordinate pairs used as [ChunkArray] keys
#[inline]
pub fn keys() -> impl Iterator<Item = ChunkCoords> + Clone + Debug {
iproduct!(ChunkZ::iter(), ChunkX::iter()).map(|(z, x)| ChunkCoords { x, z })
}
/// Iterates over all values stored in the [ChunkArray]
#[inline]
pub fn values(&self) -> impl Iterator<Item = &T> + Clone + Debug {
Self::keys().map(|k| &self[k])
}
/// Iterates over pairs of chunk coordinate pairs and corresponding stored values
#[inline]
pub fn iter(&self) -> impl Iterator<Item = (ChunkCoords, &T)> + Clone + Debug {
Self::keys().map(|k| (k, &self[k]))
}
}
impl<T> Index<ChunkCoords> for ChunkArray<T> {
type Output = T;
#[inline]
fn index(&self, index: ChunkCoords) -> &Self::Output {
&self.0[index.z.0 as usize][index.x.0 as usize]
}
}
impl<T> IndexMut<ChunkCoords> for ChunkArray<T> {
#[inline]
fn index_mut(&mut self, index: ChunkCoords) -> &mut Self::Output {
&mut self.0[index.z.0 as usize][index.x.0 as usize]
}
}