Port Chariplexing library to plain avr-libc

This commit is contained in:
Matthias Schiffer 2012-12-10 18:30:09 +01:00
commit 908807639d
5 changed files with 756 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
build
*~

36
CMakeLists.txt Normal file
View file

@ -0,0 +1,36 @@
cmake_minimum_required(VERSION 2.8.3)
SET(BOARD "atmega328p" CACHE STRING "AVR CPU to build for")
SET(CLOCK "16000000" CACHE STRING "CPU clock")
SET(FLASH_FLAGS "-patmega328p" "-carduino" "-P/dev/ttyUSB0" "-b57600" CACHE STRING "avrdude flags")
find_program(AVR_GCC avr-gcc)
find_program(AVRDUDE avrdude)
SET(CMAKE_SYSTEM_NAME Generic)
SET(CMAKE_C_COMPILER ${AVR_GCC})
project(ARDKBD C)
set(CMAKE_MODULE_PATH ${ARDKDB_SOURCE_DIR})
add_executable(lolshield.elf
lolshield.c
Charliplexing.c
)
set_target_properties(lolshield.elf PROPERTIES
COMPILE_FLAGS "-Wall -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Os -mmcu=${BOARD}"
LINK_FLAGS "-Wall -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Os -mmcu=${BOARD}"
COMPILE_DEFINITIONS "F_CPU=${CLOCK}"
)
add_custom_command(OUTPUT lolshield.hex COMMAND ${CMAKE_OBJCOPY} -O ihex -R .eeprom lolshield.elf lolshield.hex DEPENDS lolshield.elf)
add_custom_target(lolshield ALL DEPENDS lolshield.hex)
add_custom_target(flash COMMAND ${AVRDUDE} ${FLASH_FLAGS} -D -Uflash:w:lolshield.hex:i DEPENDS lolshield)

503
Charliplexing.c Normal file
View file

@ -0,0 +1,503 @@
/*
Charliplexing.cpp - Using timer2 with 1ms resolution
Alex Wenger <a.wenger@gmx.de> http://arduinobuch.wordpress.com/
Matt Mets <mahto@cibomahto.com> http://cibomahto.com/
Timer init code from MsTimer2 - Javier Valencia <javiervalencia80@gmail.com>
Misc functions from Benjamin Sonnatg <benjamin@sonntag.fr>
History:
2009-12-30 - V0.0 wrote the first version at 26C3/Berlin
2010-01-01 - V0.1 adding misc utility functions
(Clear, Vertical, Horizontal) comment are Doxygen complaints now
2010-05-27 - V0.2 add double-buffer mode
2010-08-18 - V0.9 Merge brightness and grayscale
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "Charliplexing.h"
volatile unsigned int LedSign_tcnt2;
typedef struct _videoPage {
uint8_t pixels[SHADES][48]; // TODO: is 48 right?
} videoPage;
/* ----------------------------------------------------------------- */
/** Table for the LED multiplexing cycles
* Each frame is made of 24 bytes (for the 24 display cycles)
* There are SHADES frames per buffer in grayscale mode (one for each brigtness)
* and twice that many to support double-buffered grayscale.
*/
videoPage leds[2];
/// Determines whether the display is in single or double buffer mode
uint8_t displayMode = SINGLE_BUFFER;
/// Flag indicating that the display page should be flipped as soon as the
/// current frame is displayed
volatile bool videoFlipPage = false;
/// Pointer to the buffer that is currently being displayed
videoPage* displayBuffer;
/// Pointer to the buffer that should currently be drawn to
videoPage* workBuffer;
/// Flag indicating that the timer buffer should be flipped as soon as the
/// current frame is displayed
volatile bool videoFlipTimer = false;
// Timer counts to display each page for, plus off time
typedef struct timerInfo {
uint8_t counts[SHADES];
uint8_t prescaler[SHADES];
} timerInfo;
// Double buffer the timing information, of course.
timerInfo* frontTimer;
timerInfo* backTimer;
timerInfo* tempTimer;
timerInfo timer[2];
// Record a slow and fast prescaler for later use
typedef struct prescalerInfo {
uint8_t relativeSpeed;
uint8_t TCCR2;
} prescalerInfo;
// TODO: Generate these based on processor type and clock speed
prescalerInfo slowPrescaler = {1, 0x03};
//prescalerInfo fastPrescaler = {32, 0x01};
prescalerInfo fastPrescaler = {4, 0x02};
static bool initialized = false;
/// Uncomment to set analog pin 5 high during interrupts, so that an
/// oscilloscope can be used to measure the processor time taken by it
//#define MEASURE_ISR_TIME
//#ifdef MEASURE_ISR_TIME
//uint8_t statusPIN = 19;
//#endif
typedef struct LEDPosition {
uint8_t high;
uint8_t low;
} LEDPosition;
/* ----------------------------------------------------------------- */
/** Table for LED Position in leds[] ram table
*/
const LEDPosition ledMap[126] = {
{13, 5}, {13, 6}, {13, 7}, {13, 8}, {13, 9}, {13,10}, {13,11}, {13,12},
{13, 4}, { 4,13}, {13, 3}, { 3,13}, {13, 2}, { 2,13},
{12, 5}, {12, 6}, {12, 7}, {12, 8}, {12, 9}, {12,10}, {12,11}, {12,13},
{12, 4}, { 4,12}, {12, 3}, { 3,12}, {12, 2}, { 2,12},
{11, 5}, {11, 6}, {11, 7}, {11, 8}, {11, 9}, {11,10}, {11,12}, {11,13},
{11, 4}, { 4,11}, {11, 3}, { 3,11}, {11, 2}, { 2,11},
{10, 5}, {10, 6}, {10, 7}, {10, 8}, {10, 9}, {10,11}, {10,12}, {10,13},
{10, 4}, { 4,10}, {10, 3}, { 3,10}, {10, 2}, { 2,10},
{ 9, 5}, { 9, 6}, { 9, 7}, { 9, 8}, { 9,10}, { 9,11}, { 9,12}, { 9,13},
{ 9, 4}, { 4, 9}, { 9, 3}, { 3, 9}, { 9, 2}, { 2, 9},
{ 8, 5}, { 8, 6}, { 8, 7}, { 8, 9}, { 8,10}, { 8,11}, { 8,12}, { 8,13},
{ 8, 4}, { 4, 8}, { 8, 3}, { 3, 8}, { 8, 2}, { 2, 8},
{ 7, 5}, { 7, 6}, { 7, 8}, { 7, 9}, { 7,10}, { 7,11}, { 7,12}, { 7,13},
{ 7, 4}, { 4, 7}, { 7, 3}, { 3, 7}, { 7, 2}, { 2, 7},
{ 6, 5}, { 6, 7}, { 6, 8}, { 6, 9}, { 6,10}, { 6,11}, { 6,12}, { 6,13},
{ 6, 4}, { 4, 6}, { 6, 3}, { 3, 6}, { 6, 2}, { 2, 6},
{ 5, 6}, { 5, 7}, { 5, 8}, { 5, 9}, { 5,10}, { 5,11}, { 5,12}, { 5,13},
{ 5, 4}, { 4, 5}, { 5, 3}, { 3, 5}, { 5, 2}, { 2, 5},
};
/* ----------------------------------------------------------------- */
/** Constructor : Initialize the interrupt code.
* should be called in setup();
*/
void LedSignInit(uint8_t mode)
{
//#ifdef MEASURE_ISR_TIME
// pinMode(statusPIN, OUTPUT);
// digitalWrite(statusPIN, LOW);
//#endif
float prescaler = 0.0;
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || (__AVR_ATmega1280__)
TIMSK2 &= ~(1<<TOIE2);
TCCR2A &= ~((1<<WGM21) | (1<<WGM20));
TCCR2B &= ~(1<<WGM22);
ASSR &= ~(1<<AS2);
TIMSK2 &= ~(1<<OCIE2A);
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
TCCR2B |= ((1<<CS21) | (1<<CS20));
TCCR2B &= ~(1<<CS22);
prescaler = 32.0;
} else if (F_CPU < 1000000UL) { // prescaler set to 8
TCCR2B |= (1<<CS21);
TCCR2B &= ~((1<<CS22) | (1<<CS20));
prescaler = 8.0;
} else { // F_CPU > 16Mhz, prescaler set to 128
TCCR2B |= (1<<CS22);
TCCR2B &= ~((1<<CS21) | (1<<CS20));
prescaler = 64.0;
}
#elif defined (__AVR_ATmega8__)
TIMSK &= ~(1<<TOIE2);
TCCR2 &= ~((1<<WGM21) | (1<<WGM20));
TIMSK &= ~(1<<OCIE2);
ASSR &= ~(1<<AS2);
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
TCCR2 |= (1<<CS22);
TCCR2 &= ~((1<<CS21) | (1<<CS20));
prescaler = 64.0;
} else if (F_CPU < 1000000UL) { // prescaler set to 8
TCCR2 |= (1<<CS21);
TCCR2 &= ~((1<<CS22) | (1<<CS20));
prescaler = 8.0;
} else { // F_CPU > 16Mhz, prescaler set to 128
TCCR2 |= ((1<<CS22) && (1<<CS20));
TCCR2 &= ~(1<<CS21);
prescaler = 128.0;
}
#elif defined (__AVR_ATmega128__)
TIMSK &= ~(1<<TOIE2);
TCCR2 &= ~((1<<WGM21) | (1<<WGM20));
TIMSK &= ~(1<<OCIE2);
if ((F_CPU >= 1000000UL) && (F_CPU <= 16000000UL)) { // prescaler set to 64
TCCR2 |= ((1<<CS21) | (1<<CS20));
TCCR2 &= ~(1<<CS22);
prescaler = 64.0;
} else if (F_CPU < 1000000UL) { // prescaler set to 8
TCCR2 |= (1<<CS21);
TCCR2 &= ~((1<<CS22) | (1<<CS20));
prescaler = 8.0;
} else { // F_CPU > 16Mhz, prescaler set to 256
TCCR2 |= (1<<CS22);
TCCR2 &= ~((1<<CS21) | (1<<CS20));
prescaler = 256.0;
}
#endif
LedSign_tcnt2 = 256 - (int)((float)F_CPU * 0.0005 / prescaler);
// Record whether we are in single or double buffer mode
displayMode = mode;
videoFlipPage = false;
// Point the display buffer to the first physical buffer
displayBuffer = &leds[0];
// If we are in single buffered mode, point the work buffer
// at the same physical buffer as the display buffer. Otherwise,
// point it at the second physical buffer.
if( displayMode & DOUBLE_BUFFER ) {
workBuffer = &leds[1];
}
else {
workBuffer = displayBuffer;
}
// Set up the timer buffering
frontTimer = &timer[0];
backTimer = &timer[1];
videoFlipTimer = false;
LedSignSetBrightness(127);
// Clear the buffer and display it
LedSignClear(0);
LedSignFlip(false);
// Then start the display
TCNT2 = LedSign_tcnt2;
#if defined (__AVR_ATmega168__) || defined (__AVR_ATmega48__) || defined (__AVR_ATmega88__) || defined (__AVR_ATmega328P__) || (__AVR_ATmega1280__)
TIMSK2 |= (1<<TOIE2);
#elif defined (__AVR_ATmega128__) || defined (__AVR_ATmega8__)
TIMSK |= (1<<TOIE2);
#endif
// If we are in double-buffer mode, wait until the display flips before we
// return
if (displayMode & DOUBLE_BUFFER)
{
while (videoFlipPage) {
_delay_ms(1);
}
}
initialized = true;
}
/* ----------------------------------------------------------------- */
/** Signal that the front and back buffers should be flipped
* @param blocking if true : wait for flip before returning, if false :
* return immediately.
*/
void LedSignFlip(bool blocking)
{
if (displayMode & DOUBLE_BUFFER)
{
// Just set the flip flag, the buffer will flip between redraws
videoFlipPage = true;
// If we are blocking, sit here until the page flips.
while (blocking && videoFlipPage) {
_delay_ms(1);
}
}
}
/* ----------------------------------------------------------------- */
/** Clear the screen completely
* @param set if 1 : make all led ON, if not set or 0 : make all led OFF
*/
void LedSignClear(int set) {
int x, y;
for(x=0;x<14;x++)
for(y=0;y<9;y++)
LedSignSet(x,y,set);
}
/* ----------------------------------------------------------------- */
/** Clear an horizontal line completely
* @param y is the y coordinate of the line to clear/light [0-8]
* @param set if 1 : make all led ON, if not set or 0 : make all led OFF
*/
void LedSignHorizontal(int y, int set) {
int x;
for(x=0;x<14;x++)
LedSignSet(x,y,set);
}
/* ----------------------------------------------------------------- */
/** Clear a vertical line completely
* @param x is the x coordinate of the line to clear/light [0-13]
* @param set if 1 : make all led ON, if not set or 0 : make all led OFF
*/
void LedSignVertical(int x, int set) {
int y;
for(y=0;y<9;y++)
LedSignSet(x,y,set);
}
/* ----------------------------------------------------------------- */
/** Set : switch on and off the leds. All the position #for char in frameString:
* calculations are done here, so we don't need to do in the
* interrupt code
*/
void LedSignSet(uint8_t x, uint8_t y, uint8_t c)
{
uint8_t pin_high = ledMap[x+y*14].high;
uint8_t pin_low = ledMap[x+y*14].low;
// pin_low is directly the address in the led array (minus 2 because the
// first two bytes are used for RS232 communication), but
// as it is a two byte array we need to check pin_high also.
// If pin_high is bigger than 8 address has to be increased by one
uint8_t bufferNum = (pin_low-2)*2 + (pin_high / 8) + ((pin_high > 7)?24:0);
uint8_t work = _BV(pin_high & 0x07);
// If we aren't in grayscale mode, just map any pin brightness to max
if (c > 0 && !(displayMode & GRAYSCALE)) {
c = SHADES-1;
}
int i;
for (i = 0; i < SHADES-1; i++) {
if( c > i ) {
workBuffer->pixels[i][bufferNum] |= work; // ON
}
else {
workBuffer->pixels[i][bufferNum] &= ~work; // OFF
}
}
}
/* Set the overall brightness of the screen
* @param brightness LED brightness, from 0 (off) to 127 (full on)
*/
void LedSignSetBrightness(uint8_t brightness)
{
// An exponential fit seems to approximate a (perceived) linear scale
float brightnessPercent = ((float)brightness / 127)*((float)brightness / 127);
uint8_t difference = 0;
/* ---- This needs review! Please review. -- thilo */
// set up page counts
// TODO: make SHADES a function parameter. This would require some refactoring.
int start = 15;
int max = 255;
float scale = 1.5;
float delta = pow( max - start , 1.0 / scale) / (SHADES - 1);
uint8_t pageCounts[SHADES];
pageCounts[0] = max - start;
uint8_t i;
for (i=1; i<SHADES; i++) {
pageCounts[i] = max - ( pow( i * delta, scale ) + start );
}
//Serial.end();
if (! initialized) {
// set front timer defaults
int i;
for (i = 0; i < SHADES; i++) {
frontTimer->counts[i] = pageCounts[i];
// TODO: Generate this dynamically
frontTimer->prescaler[i] = slowPrescaler.TCCR2;
}
}
// Wait until the previous brightness request goes through
while( videoFlipTimer ) {
_delay_ms(1);
}
// Compute on time for each of the pages
// Use the fast timer; slow timer is only useful for < 3 shades.
for (i = 0; i < SHADES - 1; i++) {
uint8_t interval = 255 - pageCounts[i];
backTimer->counts[i] = 255 - brightnessPercent
* interval
* fastPrescaler.relativeSpeed;
backTimer->prescaler[i] = fastPrescaler.TCCR2;
difference += backTimer->counts[i] - pageCounts[i];
}
// Compute off time
backTimer->counts[SHADES - 1] = 255 - difference;
backTimer->prescaler[SHADES - 1] = slowPrescaler.TCCR2;
/* ---- End of "This needs review! Please review." -- thilo */
// Have the ISR update the timer registers next run
videoFlipTimer = true;
}
/* ----------------------------------------------------------------- */
/** The Interrupt code goes here !
*/
ISR(TIMER2_OVF_vect) {
DDRD = 0x0;
DDRB = 0x0;
//#ifdef MEASURE_ISR_TIME
// digitalWrite(statusPIN, HIGH);
//#endif
// For each cycle, we have potential SHADES pages to display.
// Once every page has been displayed, then we move on to the next
// cycle.
// 24 Cycles of Matrix
static uint8_t cycle = 0;
// SHADES pages to display
static uint8_t page = 0;
TCCR2B = frontTimer->prescaler[page];
TCNT2 = frontTimer->counts[page];
if ( page < SHADES - 1) {
if (cycle < 6) {
DDRD = _BV(cycle+2) | displayBuffer->pixels[page][cycle*2];
PORTD = displayBuffer->pixels[page][cycle*2];
DDRB = displayBuffer->pixels[page][cycle*2+1];
PORTB = displayBuffer->pixels[page][cycle*2+1];
} else if (cycle < 12) {
DDRD = displayBuffer->pixels[page][cycle*2];
PORTD = displayBuffer->pixels[page][cycle*2];
DDRB = _BV(cycle-6) | displayBuffer->pixels[page][cycle*2+1];
PORTB = displayBuffer->pixels[page][cycle*2+1];
} else if (cycle < 18) {
DDRD = _BV(cycle+2-12) | displayBuffer->pixels[page][cycle*2];
PORTD = displayBuffer->pixels[page][cycle*2];
DDRB = displayBuffer->pixels[page][cycle*2+1];
PORTB = displayBuffer->pixels[page][cycle*2+1];
} else {
DDRD = displayBuffer->pixels[page][cycle*2];
PORTD = displayBuffer->pixels[page][cycle*2];
DDRB = _BV(cycle-6-12) | displayBuffer->pixels[page][cycle*2+1];
PORTB = displayBuffer->pixels[page][cycle*2+1];
}
}
else {
// Turn everything off
DDRD = 0x0;
DDRB = 0x0;
}
page++;
if (page >= SHADES) {
page = 0;
cycle++;
}
if (cycle > 24) {
cycle = 0;
// If the page should be flipped, do it here.
if (videoFlipPage && (displayMode & DOUBLE_BUFFER))
{
// TODO: is this an atomic operation?
videoFlipPage = false;
videoPage* temp = displayBuffer;
displayBuffer = workBuffer;
workBuffer = temp;
}
if (videoFlipTimer) {
videoFlipTimer = false;
tempTimer = frontTimer;
frontTimer = backTimer;
backTimer = tempTimer;
}
}
//#ifdef MEASURE_ISR_TIME
// digitalWrite(statusPIN, LOW);
//#endif
}

33
Charliplexing.h Normal file
View file

@ -0,0 +1,33 @@
/*
Charliplexing.h - Library for controlling the charliplexed led board
from JimmiePRodgers.com
Created by Alex Wenger, December 30, 2009.
Modified by Matt Mets, May 28, 2010.
Released into the public domain.
*/
#ifndef Charliplexing_h
#define Charliplexing_h
#include <stdint.h>
#include <stdbool.h>
#define SINGLE_BUFFER 0
#define DOUBLE_BUFFER 1
#define GRAYSCALE 2
#define DISPLAY_COLS 14 // Number of columns in the display
#define DISPLAY_ROWS 9 // Number of rows in the display
#define SHADES 8 // Number of distinct shades to display, including black, i.e. OFF
extern volatile unsigned int LedSign_tcnt2;
void LedSignInit(uint8_t mode);
void LedSignSet(uint8_t x, uint8_t y, uint8_t c);
void LedSignSetBrightness(uint8_t brightness);
void LedSignFlip(bool blocking);
void LedSignClear(int set);
void LedSignHorizontal(int y, int set);
void LedSignVertical(int x, int set);
#endif

182
lolshield.c Normal file
View file

@ -0,0 +1,182 @@
/*
Basic LoL Shield Test
Writen for the LoL Shield, designed by Jimmie Rodgers:
http://jimmieprodgers.com/kits/lolshield/
This needs the Charliplexing library, which you can get at the
LoL Shield project page: http://code.google.com/p/lolshield/
Created by Jimmie Rodgers on 12/30/2009.
Adapted from: http://www.arduino.cc/playground/Code/BitMath
History:
December 30, 2009 - V1.0 first version written at 26C3/Berlin
This is free software; you can redistribute it and/or
modify it under the terms of the GNU Version 3 General Public
License as published by the Free Software Foundation;
or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h> //AVR library for writing to ROM
#include <util/delay.h>
#include "Charliplexing.h" //Imports the library, which needs to be
//Initialized in setup.
const int blinkdelay = 100; //Sets the time each frame is shown
/*
The BitMap array is what contains the frame data. Each line is one full frame.
Since each number is 16 bits, we can easily fit all 14 LEDs per row into it.
The number is calculated by adding up all the bits, starting with lowest on
the left of each row. 18000 was chosen as the kill number, so make sure that
is at the end of the matrix, or the program will continue to read into memory.
Here PROGMEM is called, which stores the array into ROM, which leaves us
with our RAM. You cannot change the array during run-time, only when you
upload to the Arduino. You will need to pull it out of ROM, which is covered
below. If you want it to stay in RAM, just delete PROGMEM
*/
const uint16_t BitMap[][9] PROGMEM = {
//Diaganal swipe across the screen
{1, 0, 0, 0, 0, 0, 0, 0, 0},
{3, 1, 0, 0, 0, 0, 0, 0, 0},
{7, 3, 1, 0, 0, 0, 0, 0, 0},
{15, 7, 3, 1, 0, 0, 0, 0, 0},
{31, 15, 7, 3, 1, 0, 0, 0, 0},
{63, 31, 15, 7, 3, 1, 0, 0, 0},
{127, 63, 31, 15, 7, 3, 1, 0, 0},
{255, 127, 63, 31, 15, 7, 3, 1, 0},
{511, 255, 127, 63, 31, 15, 7, 3, 1},
{1023, 511, 255, 127, 63, 31, 15, 7, 3},
{2047, 1023, 511, 255, 127, 63, 31, 15, 7},
{4095, 2047, 1023, 511, 255, 127, 63, 31, 15},
{8191, 4095, 2047, 1023, 511, 255, 127, 63, 31},
{16383, 8191, 4095, 2047, 1023, 511, 255, 127, 63},
{16383, 16383, 8191, 4095, 2047, 1023, 511, 255, 127},
{16383, 16383, 16383, 8191, 4095, 2047, 1023, 511, 255},
{16383, 16383, 16383, 16383, 8191, 4095, 2047, 1023, 511},
{16383, 16383, 16383, 16383, 16383, 8191, 4095, 2047, 1023},
{16383, 16383, 16383, 16383, 16383, 16383, 8191, 4095, 2047},
{16383, 16383, 16383, 16383, 16383, 16383, 16383, 8191, 4095},
{16383, 16383, 16383, 16383, 16383, 16383, 16383, 16383, 8191},
{16383, 16383, 16383, 16383, 16383, 16383, 16383, 16383, 16383},
{16383, 16383, 16383, 16383, 16383, 16383, 16383, 16383, 16383},
{16382, 16383, 16383, 16383, 16383, 16383, 16383, 16383, 16383},
{16380, 16382, 16383, 16383, 16383, 16383, 16383, 16383, 16383},
{16376, 16380, 16382, 16383, 16383, 16383, 16383, 16383, 16383},
{16368, 16376, 16380, 16382, 16383, 16383, 16383, 16383, 16383},
{16352, 16368, 16376, 16380, 16382, 16383, 16383, 16383, 16383},
{16320, 16352, 16368, 16376, 16380, 16382, 16383, 16383, 16383},
{16256, 16320, 16352, 16368, 16376, 16380, 16382, 16383, 16383},
{16128, 16256, 16320, 16352, 16368, 16376, 16380, 16382, 16383},
{15872, 16128, 16256, 16320, 16352, 16368, 16376, 16380, 16382},
{15360, 15872, 16128, 16256, 16320, 16352, 16368, 16376, 16380},
{14336, 15360, 15872, 16128, 16256, 16320, 16352, 16368, 16376},
{12288, 14336, 15360, 15872, 16128, 16256, 16320, 16352, 16368},
{8192, 12288, 14336, 15360, 15872, 16128, 16256, 16320, 16352},
{0, 8192, 12288, 14336, 15360, 15872, 16128, 16256, 16320},
{0, 0, 8192, 12288, 14336, 15360, 15872, 16128, 16256},
{0, 0, 0, 8192, 12288, 14336, 15360, 15872, 16128},
{0, 0, 0, 0, 8192, 12288, 14336, 15360, 15872},
{0, 0, 0, 0, 0, 8192, 12288, 14336, 15360},
{0, 0, 0, 0, 0, 0, 8192, 12288, 14336},
{0, 0, 0, 0, 0, 0, 0, 8192, 12288},
{0, 0, 0, 0, 0, 0, 0, 0, 8192},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
//Horizontal swipe
{1, 1, 1, 1, 1, 1, 1, 1, 1} ,
{3, 3, 3, 3, 3, 3, 3, 3, 3},
{7, 7, 7, 7, 7, 7, 7, 7, 7},
{15, 15, 15, 15, 15, 15, 15, 15, 15},
{31, 31, 31, 31, 31, 31, 31, 31, 31},
{63, 63, 63, 63, 63, 63, 63, 63, 63},
{127, 127, 127, 127, 127, 127, 127, 127, 127},
{255, 255, 255, 255, 255, 255, 255, 255, 255},
{511, 511, 511, 511, 511, 511, 511, 511, 511},
{1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023, 1023},
{2047, 2047, 2047, 2047, 2047, 2047, 2047, 2047, 2047},
{4095, 4095, 4095, 4095, 4095, 4095, 4095, 4095, 4095},
{8191, 8191, 8191, 8191, 8191, 8191, 8191, 8191, 8191},
{16383, 16383, 16383, 16383, 16383, 16383, 16383, 16383, 16383},
{16382, 16382, 16382, 16382, 16382, 16382, 16382, 16382, 16382},
{16380, 16380, 16380, 16380, 16380, 16380, 16380, 16380, 16380},
{16376, 16376, 16376, 16376, 16376, 16376, 16376, 16376, 16376},
{16368, 16368, 16368, 16368, 16368, 16368, 16368, 16368, 16368},
{16352, 16352, 16352, 16352, 16352, 16352, 16352, 16352, 16352},
{16320, 16320, 16320, 16320, 16320, 16320, 16320, 16320, 16320},
{16256, 16256, 16256, 16256, 16256, 16256, 16256, 16256, 16256},
{16128, 16128, 16128, 16128, 16128, 16128, 16128, 16128, 16128},
{15872, 15872, 15872, 15872, 15872, 15872, 15872, 15872, 15872},
{15360, 15360, 15360, 15360, 15360, 15360, 15360, 15360, 15360},
{14336, 14336, 14336, 14336, 14336, 14336, 14336, 14336, 14336},
{12288, 12288, 12288, 12288, 12288, 12288, 12288, 12288, 12288},
{8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{18000}
};
void DisplayBitMap()
{
bool run=true; //While this is true, the screen updates
uint8_t frame = 0; //Frame counter
uint8_t line = 0; //Row counter
uint8_t led;
unsigned long data; //Temporary storage of the row data
while(run == true) {
for(line = 0; line < 9; line++) {
//Here we fetch data from program memory with a pointer.
data = pgm_read_word_near (&BitMap[frame][line]);
//Kills the loop if the kill number is found
if (data==18000){
run=false;
}
//This is where the bit-shifting happens to pull out
//each LED from a row. If the bit is 1, then the LED
//is turned on, otherwise it is turned off.
else for (led=0; led<14; ++led) {
if (data & (1<<led)) {
LedSignSet(led, line, 1);
}
else {
LedSignSet(led, line, 0);
}
}
}
//Delays the next update
_delay_ms(blinkdelay);
frame++;
}
}
int main() {
LedSignInit(SINGLE_BUFFER); //Initializes the screen
sei();
while (true) {
DisplayBitMap(); //Displays the bitmap
}
return 0;
}