This repository has been archived on 2025-03-02. You can view files and clone it, but cannot push or open issues or pull requests.
phi/lib/Phi/Widget.hs

172 lines
5.7 KiB
Haskell

{-# LANGUAGE ExistentialQuantification, StandaloneDeriving, DeriveDataTypeable, MultiParamTypeClasses, FunctionalDependencies, TypeSynonymInstances, FlexibleInstances #-}
module Phi.Widget ( Display(..)
, withDisplay
, getAtoms
, XMessage(..)
, unionArea
, SurfaceSlice(..)
, Widget(..)
, CompoundWidget
, (<~>)
, IOCache
, RenderCache
, createIOCache
, runIOCache
, createRenderCache
, renderCached
, Separator
, separator
) where
import Control.Arrow
import Control.Arrow.Transformer
import Control.CacheArrow
import Control.Concurrent.MVar
import Control.Monad
import Control.Monad.State.Strict hiding (lift)
import Control.Monad.IO.Class
import Data.Maybe
import Data.Typeable
import qualified Graphics.X11.Xlib as Xlib
import Graphics.Rendering.Cairo
import Phi.Phi
import Phi.X11.Atoms
data Display = Display !(MVar Xlib.Display) !Atoms
withDisplay :: MonadIO m => Display -> (Xlib.Display -> m a) -> m a
withDisplay (Display dispvar _) f = do
disp <- liftIO $ takeMVar dispvar
a <- f disp
liftIO $ putMVar dispvar disp
return a
getAtoms :: Display -> Atoms
getAtoms (Display _ atoms) = atoms
data XMessage = UpdateScreens [(Xlib.Rectangle, Xlib.Window)] deriving (Show, Typeable)
unionArea :: Xlib.Rectangle -> Xlib.Rectangle -> Int
unionArea a b = fromIntegral $ uw*uh
where
uw = max 0 $ (min ax2 bx2) - (max ax1 bx1)
uh = max 0 $ (min ay2 by2) - (max ay1 by1)
Xlib.Rectangle ax1 ay1 aw ah = a
Xlib.Rectangle bx1 by1 bw bh = b
ax2 = ax1 + fromIntegral aw
ay2 = ay1 + fromIntegral ah
bx2 = bx1 + fromIntegral bw
by2 = by1 + fromIntegral bh
data SurfaceSlice = SurfaceSlice !Int !Surface
class Eq s => Widget w s c | w -> s, w -> c where
initWidget :: w -> Phi -> Display -> [(Xlib.Rectangle, Xlib.Window)] -> IO s
initCache :: w -> c
minSize :: w -> s -> Int -> Xlib.Rectangle -> Int
weight :: w -> Float
weight _ = 0
render :: w -> s -> Int -> Int -> Int -> Int -> Xlib.Rectangle -> StateT c IO [(Bool, SurfaceSlice)]
handleMessage :: w -> s -> Message -> s
handleMessage _ priv _ = priv
type IOCache = CacheArrow (Kleisli IO)
type RenderCache s = IOCache (s, Int, Int, Int, Int, Xlib.Rectangle) Surface
createIOCache :: Eq a => (a -> IO b) -> IOCache a b
createIOCache = lift . Kleisli
runIOCache :: Eq a => a -> StateT (IOCache a b) IO b
runIOCache a = do
cache <- get
(b, cache') <- liftIO $ runKleisli (runCache cache) a
put cache'
return b
createRenderCache :: (s -> Int -> Int -> Int -> Int -> Xlib.Rectangle -> Render ())
-> CacheArrow (Kleisli IO) (s, Int, Int, Int, Int, Xlib.Rectangle) Surface
createRenderCache f = lift . Kleisli $ \(state, x, y, w, h, screen) -> do
surface <- createImageSurface FormatARGB32 w h
renderWith surface $ do
setOperator OperatorClear
paint
setOperator OperatorOver
f state x y w h screen
return surface
renderCached :: Eq s => s -> Int -> Int -> Int -> Int -> Xlib.Rectangle -> StateT (RenderCache s) IO [(Bool, SurfaceSlice)]
renderCached state x y w h screen = do
cache <- get
(surf, updated, cache') <- liftIO $ runKleisli (runCache' cache) (state, x, y, w, h, screen)
put cache'
return [(updated, SurfaceSlice 0 surf)]
data CompoundWidget a sa ca b sb cb = (Widget a sa ca, Widget b sb cb) => CompoundWidget !a !b
data CompoundState a sa ca b sb cb = (Widget a sa ca, Widget b sb cb) => CompoundState !sa !sb
deriving instance Eq (CompoundState a sa ca b sb cb)
data CompoundCache a sa ca b sb cb = (Widget a sa ca, Widget b sb cb) => CompoundCache !ca !cb
instance Widget (CompoundWidget a sa ca b sb cb) (CompoundState a sa ca b sb cb) (CompoundCache a sa ca b sb cb) where
initWidget (CompoundWidget a b) phi disp screens = liftM2 CompoundState (initWidget a phi disp screens) (initWidget b phi disp screens)
initCache (CompoundWidget a b) = CompoundCache (initCache a) (initCache b)
minSize (CompoundWidget a b) (CompoundState da db) height screen = minSize a da height screen + minSize b db height screen
weight (CompoundWidget a b) = weight' a + weight' b
render c@(CompoundWidget a b) s@(CompoundState sa sb) x y w h screen = do
let sizesum = minSize c s h screen
wsum = let wsum = weight c
in if wsum > 0 then wsum else 1
surplus = w - sizesum
xb = floor $ (fromIntegral $ minSize a sa h screen) + (fromIntegral surplus)*(weight' a)/wsum
CompoundCache ca cb <- get
(surfacea, ca') <- liftIO $ flip runStateT ca $ render a sa x y xb h screen
(surfaceb, cb') <- liftIO $ flip runStateT cb $ render b sb (x+xb) y (w-xb) h screen
put $ CompoundCache ca' cb'
return $ surfacea ++ map (\(updated, SurfaceSlice x surface) -> (updated, SurfaceSlice (x+xb) surface)) surfaceb
handleMessage (CompoundWidget a b) (CompoundState sa sb) message = CompoundState (handleMessage a sa message) (handleMessage b sb message)
weight' :: (Widget a sa ca) => a -> Float
weight' = max 0 . weight
(<~>) :: (Widget a sa ca, Widget b sb cb) => a -> b -> CompoundWidget a sa ca b sb cb
a <~> b = CompoundWidget a b
data Separator = Separator !Int !Float deriving (Show, Eq)
instance Widget Separator () (RenderCache ()) where
initWidget _ _ _ _ = return ()
initCache _ = createRenderCache $ \_ _ _ _ _ _ -> do
setOperator OperatorClear
paint
minSize (Separator s _) _ _ _ = s
weight (Separator _ w) = w
render _ = renderCached
separator :: Int -> Float -> Separator
separator = Separator