summaryrefslogtreecommitdiffstats
path: root/doc/bird.sgml
blob: d454629362dc810a346829a2b2c05ba3180cbbdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
<!doctype birddoc system>

<!--
	BIRD documentation

This documentation can have 4 forms: sgml (this is master copy), html,
ASCII text and dvi/postscript (generated from sgml using
sgmltools). You should always edit master copy.

This is a slightly modified linuxdoc dtd.  Anything in <descrip> tags is considered definition of
configuration primitives, <cf> is fragment of configuration within normal text, <m> is
"meta" information within fragment of configuration - something in config which is not keyword.

    (set-fill-column 100)

    Copyright 1999,2000 Pavel Machek <pavel@ucw.cz>, distribute under GPL version 2 or later.

 -->

<book>

<title>BIRD User's Guide
<author>
Ondrej Filip <it/&lt;feela@network.cz&gt;/,
Pavel Machek <it/&lt;pavel@ucw.cz&gt;/,
Martin Mares <it/&lt;mj@ucw.cz&gt;/,
Ondrej Zajicek <it/&lt;santiago@crfreenet.org&gt;/
</author>

<abstract>
This document contains user documentation for the BIRD Internet Routing Daemon project.
</abstract>

<!-- Table of contents -->
<toc>

<!-- Begin the document -->

<chapt>Introduction

<sect>What is BIRD

<p><label id="intro">
The name `BIRD' is actually an acronym standing for `BIRD Internet Routing Daemon'.
Let's take a closer look at the meaning of the name:

<p><em/BIRD/: Well, we think we have already explained that. It's an acronym standing
for `BIRD Internet Routing Daemon', you remember, don't you? :-)

<p><em/Internet Routing/: It's a program (well, a daemon, as you are going to discover in a moment)
which works as a dynamic router in an Internet type network (that is, in a network running either
the IPv4 or the IPv6 protocol). Routers are devices which forward packets between interconnected
networks in order to allow hosts not connected directly to the same local area network to
communicate with each other. They also communicate with the other routers in the Internet to discover
the topology of the network which allows them to find optimal (in terms of some metric) rules for
forwarding of packets (which are called routing tables) and to adapt themselves to the
changing conditions such as outages of network links, building of new connections and so on. Most of
these routers are costly dedicated devices running obscure firmware which is hard to configure and
not open to any changes (on the other hand, their special hardware design allows them to keep up with lots of high-speed network interfaces, better than general-purpose computer does). Fortunately, most operating systems of the UNIX family allow an ordinary 
computer to act as a router and forward packets belonging to the other hosts, but only according to
a statically configured table.

<p>A <em/Routing Daemon/ is in UNIX terminology a non-interactive program running on
background which does the dynamic part of Internet routing, that is it communicates
with the other routers, calculates routing tables and sends them to the OS kernel
which does the actual packet forwarding. There already exist other such routing
daemons: routed (RIP only), GateD (non-free), Zebra<HTMLURL URL="http://www.zebra.org">
and MRTD<HTMLURL URL="http://sourceforge.net/projects/mrt">, but their capabilities are
limited and they are relatively hard to configure and maintain.

<p>BIRD is an Internet Routing Daemon designed to avoid all of these shortcomings,
to support all the routing technology used in the today's Internet or planned to be
used in near future and to have a clean extensible architecture allowing new routing
protocols to be incorporated easily. Among other features, BIRD supports:

<itemize>
	<item>both IPv4 and IPv6 protocols
	<item>multiple routing tables
	<item>the Border Gateway Protocol (BGPv4)
	<item>the Routing Information Protocol (RIPv2)
	<item>the Open Shortest Path First protocol (OSPFv2, OSPFv3)
	<item>the Router Advertisements for IPv6 hosts
	<item>a virtual protocol for exchange of routes between different routing tables on a single host
	<item>a command-line interface allowing on-line control and inspection
		of status of the daemon
	<item>soft reconfiguration (no need to use complex online commands
		to change the configuration, just edit the configuration file
		and notify BIRD to re-read it and it will smoothly switch itself
		to the new configuration, not disturbing routing protocols
		unless they are affected by the configuration changes)
	<item>a powerful language for route filtering
</itemize>

<p>BIRD has been developed at the Faculty of Math and Physics, Charles University, Prague,
Czech Republic as a student project. It can be freely distributed under the terms of the GNU General
Public License.

<p>BIRD has been designed to work on all UNIX-like systems. It has
been developed and tested under Linux 2.0 to 2.6, and then ported to
FreeBSD, NetBSD and OpenBSD, porting to other systems (even non-UNIX
ones) should be relatively easy due to its highly modular
architecture.

<p>BIRD supports either IPv4 or IPv6 protocol, but have to be compiled
separately for each one. Therefore, a dualstack router would run two
instances of BIRD (one for IPv4 and one for IPv6), with completely
separate setups (configuration files, tools ...).

<sect>Installing BIRD

<p>On a recent UNIX system with GNU development tools (GCC, binutils, m4, make) and Perl, installing BIRD should be as easy as:

<code>
        ./configure
        make
        make install
        vi /usr/local/etc/bird.conf
	bird
</code>

<p>You can use <tt>./configure --help</tt> to get a list of configure
options. The most important ones are:
<tt/--enable-ipv6/ which enables building of an IPv6 version of BIRD,
<tt/--with-protocols=/ to produce a slightly smaller BIRD executable by configuring out routing protocols you don't use, and
<tt/--prefix=/ to install BIRD to a place different from.
<file>/usr/local</file>.

<sect>Running BIRD

<p>You can pass several command-line options to bird:

<descrip>
	<tag>-c <m/config name/</tag>
	use given configuration file instead of <it/prefix/<file>/etc/bird.conf</file>.

	<tag>-d</tag>
	enable debug messages and run bird in foreground.

	<tag>-D <m/filename of debug log/</tag>
	log debugging information to given file instead of stderr.

	<tag>-p</tag>
	just parse the config file and exit. Return value is zero if the config file is valid,
	nonzero if there are some errors.

	<tag>-s <m/name of communication socket/</tag>
	use given filename for a  socket for communications with the client, default is <it/prefix/<file>/var/run/bird.ctl</file>.

	<tag>-u <m/user/</tag>
	drop privileges and use that user ID, see the next section for details.

	<tag>-g <m/group/</tag>
	use that group ID, see the next section for details.
</descrip>

<p>BIRD writes messages about its work to log files or syslog (according to config).

<sect>Privileges

<p>BIRD, as a routing daemon, uses several privileged operations (like
setting routing table and using raw sockets). Traditionally, BIRD is
executed and runs with root privileges, which may be prone to security
problems. The recommended way is to use a privilege restriction
(options <cf/-u/, <cf/-g/). In that case BIRD is executed with root
privileges, but it changes its user and group ID to an unprivileged
ones, while using Linux capabilities to retain just required
privileges (capabilities CAP_NET_*). Note that the control socket is
created before the privileges are dropped, but the config file is read
after that. The privilege restriction is not implemented in BSD port
of BIRD.

<p>A nonprivileged user (as an argument to <cf/-u/ options) may be the
user <cf/nobody/, but it is suggested to use a new dedicated user
account (like <cf/bird/). The similar considerations apply for
the group option, but there is one more condition -- the users
in the same group can use <file/birdc/ to control BIRD.

<p>Finally, there is a possibility to use external tools to run BIRD in
an environment with restricted privileges. This may need some
configuration, but it is generally easy -- BIRD needs just the
standard library, privileges to read the config file and create the
control socket and the CAP_NET_* capabilities.

<chapt>About routing tables

<p>BIRD has one or more routing tables which may or may not be
synchronized with OS kernel and which may or may not be synchronized with
each other (see the Pipe protocol). Each routing table contains a list of
known routes. Each route consists of:

<itemize>
	<item>network prefix this route is for (network address and prefix length -- the number of bits forming the network part of the address; also known as a netmask)
	<item>preference of this route
	<item>IP address of router which told us about this route
	<item>IP address of router we should forward the packets to
	using this route
	<item>other attributes common to all routes
	<item>dynamic attributes defined by protocols which may or
	may not be present (typically protocol metrics)
</itemize>

Routing table maintains multiple entries
for a network, but at most one entry for one network and one
protocol. The entry with the highest preference is used for routing (we
will call such an entry the <it/selected route/). If
there are more entries with the same preference and they are from the same
protocol, the protocol decides (typically according to metrics). If they aren't,
an internal ordering is used to break the tie. You can
get the list of route attributes in the Route attributes section.

<p>Each protocol is connected to a routing table through two filters
which can accept, reject and modify the routes. An <it/export/
filter checks routes passed from the routing table to the protocol,
an <it/import/ filter checks routes in the opposite direction.
When the routing table gets a route from a protocol, it recalculates
the selected route and broadcasts it to all protocols connected to
the table. The protocols typically send the update to other routers
in the network.

<chapt>Configuration

<sect>Introduction

<p>BIRD is configured using a text configuration file. Upon startup, BIRD reads <it/prefix/<file>/etc/bird.conf</file> (unless the
<tt/-c/ command line option is given). Configuration may be changed at user's request: if you modify
the config file and then signal BIRD with <tt/SIGHUP/, it will adjust to the new
config. Then there's the client
which allows you to talk with BIRD in an extensive way.

<p>In the config, everything on a line after <cf/#/ or inside <cf>/*
*/</cf> is a comment, whitespace characters are treated as a single space. If there's a variable number of options, they are grouped using
the <cf/{ }/ brackets. Each option is terminated by a <cf/;/. Configuration
is case sensitive.

<p>Here is an example of a simple config file. It enables
synchronization of routing tables with OS kernel, scans for 
new network interfaces every 10 seconds and runs RIP on all network interfaces found.


<code>
protocol kernel {
	persist;		# Don't remove routes on BIRD shutdown
	scan time 20;		# Scan kernel routing table every 20 seconds
	export all;		# Default is export none
}

protocol device {
	scan time 10;		# Scan interfaces every 10 seconds
}

protocol rip {
	export all;
	import all;
	interface "*";
}
</code>


<sect>Global options

<p><descrip>
	<tag>include "<m/filename/"</tag> 
	This statement causes inclusion of a new file. The maximal depth is set to 5.

	<tag>log "<m/filename/"|syslog [name <m/name/]|stderr all|{ <m/list of classes/ }</tag> 
	Set logging of messages having the given class (either <cf/all/ or <cf/{
	error, trace }/ etc.) into selected destination (a file specified as a filename string,
	syslog with optional name argument, or the stderr output). Classes are:
	<cf/info/, <cf/warning/, <cf/error/ and <cf/fatal/ for messages about local problems,
	<cf/debug/ for debugging messages, 
	<cf/trace/ when you want to know what happens in the network, 
	<cf/remote/ for messages about misbehavior of remote machines, 
	<cf/auth/ about authentication failures,
	<cf/bug/ for internal BIRD bugs. You may specify more than one <cf/log/ line to establish logging to multiple
	destinations. Default: log everything to the system log.

	<tag>debug protocols all|off|{ states, routes, filters, interfaces, events, packets }</tag>
	Set global defaults of protocol debugging options. See <cf/debug/ in the following section. Default: off.

	<tag>debug commands <m/number/</tag>
	Control logging of client connections (0 for no logging, 1 for
	logging of connects and disconnects, 2 and higher for logging of
	all client commands). Default: 0.

	<tag>mrtdump "<m/filename/"</tag>
	Set MRTdump file name. This option must be specified to allow MRTdump feature.
	Default: no dump file.

	<tag>mrtdump protocols all|off|{ states, messages }</tag>
	Set global defaults of MRTdump options. See <cf/mrtdump/ in the following section.
	Default: off.

	<tag>filter <m/name local variables/{ <m/commands/ }</tag> Define a filter. You can learn more about filters
	in the following chapter. 

	<tag>function <m/name/ (<m/parameters/) <m/local variables/ { <m/commands/ }</tag> Define a function. You can learn more
	about functions in the following chapter.
 
	<tag>protocol rip|ospf|bgp|... <m/[name]/ { <m>protocol options</m> }</tag> Define a protocol
	instance called <cf><m/name/</cf> (or with a name like "rip5" generated automatically if you don't specify any <cf><m/name/</cf>). You can learn more
	about configuring protocols in their own chapters. You can run more than one instance of
	most protocols (like RIP or BGP). By default, no instances are configured.

	<tag>define <m/constant/ = (<m/expression/)|<m/number/|<m/IP address/</tag>
	Define a constant. You can use it later in every place you could use a simple integer or an IP address.
	Besides, there are some predefined numeric constants based on /etc/iproute2/rt_* files.
	A list of defined constants can be seen (together with other symbols) using 'show symbols' command.

	<tag>router id <m/IPv4 address/</tag> Set BIRD's router ID. It's a world-wide unique identification of your router, usually one of router's IPv4 addresses. Default: in IPv4 version, the lowest IP address of a non-loopback interface. In IPv6 version, this option is mandatory. 

	<tag>listen bgp [address <m/address/] [port <m/port/] [dual]</tag>
	This option allows to specify address and port where BGP
	protocol should listen. It is global option as listening
	socket is common to all BGP instances. Default is to listen on
	all addresses (0.0.0.0) and port 179. In IPv6 mode, option
	<cf/dual/ can be used to specify that BGP socket should accept
	both IPv4 and IPv6 connections (but even in that case, BIRD
	would accept IPv6 routes only). Such behavior was default in
	older versions of BIRD.

	<tag>timeformat route|protocol|base|log "<m/format1/" [<m/limit/ "<m/format2/"]</tag>
	This option allows to specify a format of date/time used by
	BIRD.  The first argument specifies for which purpose such
	format is used. <cf/route/ is a format used in 'show route'
	command output, <cf/protocol/ is used in 'show protocols'
	command output, <cf/base/ is used for other commands and
	<cf/log/ is used in a log file.

	"<m/format1/" is a format string using <it/strftime(3)/
	notation (see <it/man strftime/ for details). <m/limit> and
	"<m/format2/" allow to specify the second format string for
	times in past deeper than <m/limit/ seconds. There are two
	shorthands: <cf/iso long/ is a ISO 8601 date/time format
	(YYYY-MM-DD hh:mm:ss) that can be also specified using <cf/"%F
	%T"/. <cf/iso short/ is a variant of ISO 8601 that uses just
	the time format (hh:mm:ss) for near times (up to 20 hours in
	the past) and the date format (YYYY-MM-DD) for far times. This
	is a shorthand for <cf/"%T" 72000 "%F"/.

	By default, BIRD uses an short, ad-hoc format for <cf/route/
	and <cf/protocol/ times, and a <cf/iso long/ similar format
	(DD-MM-YYYY hh:mm:ss) for <cf/base/ and <cf/log/. These
	defaults are here for a compatibility with older versions
	and might change in the future.

	<tag>table <m/name/</tag> Create a new routing table. The default
	routing table is created implicitly, other routing tables have
	to be added by this command.

	<tag>eval <m/expr/</tag> Evaluates given filter expression. It
	is used by us for testing of filters.
</descrip>

<sect>Protocol options

<p>For each protocol instance, you can configure a bunch of options.
Some of them (those described in this section) are generic, some are
specific to the protocol (see sections talking about the protocols).

<p>Several options use a <cf><m/switch/</cf> argument. It can be either
<cf/on/, <cf/yes/ or a numeric expression with a non-zero value for the
option to be enabled or <cf/off/, <cf/no/ or a numeric expression evaluating
to zero to disable it. An empty <cf><m/switch/</cf> is equivalent to <cf/on/
("silence means agreement").

<descrip>
	<tag>preference <m/expr/</tag> Sets the preference of routes generated by this protocol. Default: protocol dependent.

	<tag>disabled <m/switch/</tag> Disables the protocol. You can change the disable/enable status from the command
	line interface without needing to touch the configuration. Disabled protocols are not activated. Default: protocol is enabled.

	<tag>debug all|off|{ states, routes, filters, interfaces, events, packets }</tag>
	Set protocol debugging options. If asked, each protocol is capable of
	writing trace messages about its work to the log (with category
	<cf/trace/). You can either request printing of <cf/all/ trace messages
	or only of the types selected: <cf/states/ for protocol state changes
	(protocol going up, down, starting, stopping etc.),
	<cf/routes/ for routes exchanged with the routing table,
	<cf/filters/ for details on route filtering,
	<cf/interfaces/ for interface change events sent to the protocol,
	<cf/events/ for events internal to the protocol and
	<cf/packets/ for packets sent and received by the protocol. Default: off.

	<tag>mrtdump all|off|{ states, messages }</tag>

	Set protocol MRTdump flags. MRTdump is a standard binary
	format for logging information from routing protocols and
	daemons.  These flags control what kind of information is
	logged from the protocol to the MRTdump file (which must be
	specified by global <cf/mrtdump/ option, see the previous
	section). Although these flags are similar to flags of
	<cf/debug/ option, their meaning is different and
	protocol-specific. For BGP protocol, <cf/states/ logs BGP
	state changes and <cf/messages/ logs received BGP messages.
	Other protocols does not support MRTdump yet.

	<tag>router id <m/IPv4 address/</tag> This option can be used
	to override global router id for a given protocol. Default:
	uses global router id.

	<tag>import all | none | filter <m/name/ | filter { <m/filter commands/ } | where <m/filter expression/</tag> 
	Specify a filter to be used for filtering routes coming from the protocol to the routing table. <cf/all/ is shorthand for <cf/where true/ and <cf/none/ is shorthand for <cf/where false/. Default: <cf/all/.

	<tag>export <m/filter/</tag> This is similar to the <cf>import</cf> keyword, except that it
	works in the direction from the routing table to the protocol. Default: <cf/none/.

	<tag>description "<m/text/"</tag> This is an optional
	description of the protocol. It is displayed as a part of the
	output of 'show route all' command.

	<tag>table <m/name/</tag> Connect this protocol to a non-default routing table.
</descrip>

<p>There are several options that give sense only with certain protocols:

<descrip>
	<tag><label id="dsc-iface">interface [-] [ "<m/mask/" ] [ <m/prefix/ ] [, ...] [ { <m/option/ ; [...] } ]</tag>

	Specifies a set of interfaces on which the protocol is activated with
	given interface-specific options. A set of interfaces specified by one
	interface option is described using an interface pattern. The
	interface pattern consists of a sequence of clauses (separated by
	commas), each clause may contain a mask, a prefix, or both of them. An
	interface matches the clause if its name matches the mask (if
	specified) and its address matches the prefix (if specified). Mask is
	specified as shell-like pattern. For IPv6, the prefix part of a clause
	is generally ignored and interfaces are matched just by their name.

	An interface matches the pattern if it matches any of its
	clauses. If the clause begins with <cf/-/, matching interfaces are
	excluded. Patterns are parsed left-to-right, thus
	<cf/interface "eth0", -"eth*", "*";/ means eth0 and all
	non-ethernets.

	An interface option can be used more times with different
	interfaces-specific options, in that case for given interface
	the first matching interface option is used.
	
	This option is allowed in Direct, OSPF, RIP and RAdv protocols,
	but in OSPF protocol it is used in <cf/area/ subsection.

	Default: none.

	Examples:

	<cf>interface "*" { type broadcast; };</cf> - start the protocol on all interfaces with
	<cf>type broadcast</cf> option.

	<cf>interface "eth1", "eth4", "eth5" { type ptp; };</cf> - start the protocol
	on enumerated interfaces with <cf>type ptp</cf> option.
	
	<cf>interface -192.168.1.0/24, 192.168.0.0/16;</cf> - start the protocol on all
	interfaces that have address from 192.168.0.0/16, but not
	from 192.168.1.0/24.

	<cf>interface -192.168.1.0/24, 192.168.0.0/16;</cf> - start the protocol on all
	interfaces that have address from 192.168.0.0/16, but not
	from 192.168.1.0/24.

	<cf>interface "eth*" 192.168.1.0/24;</cf> - start the protocol on all
	ethernet interfaces that have address from 192.168.1.0/24.

	<tag><label id="dsc-pass">password "<m/password/" [ { id <m/num/; generate from <m/time/; generate to <m/time/; accept from <m/time/; accept to <m/time/; } ]</tag>
	Specifies a password that can be used by the protocol. Password option can
	be used more times to specify more passwords. If more passwords are
	specified, it is a protocol-dependent decision which one is really
	used. Specifying passwords does not mean that authentication is
	enabled, authentication can be enabled by separate, protocol-dependent
	<cf/authentication/ option.
	
	This option is allowed in OSPF and RIP protocols. BGP has also
	<cf/password/ option, but it is slightly different and described
	separately.

	Default: none.
</descrip>

<p>Password option can contain section with some (not necessary all) password sub-options:

<descrip>
	<tag>id <M>num</M></tag>
	 ID of the password, (0-255). If it's not used, BIRD will choose
	 ID based on an order of the password item in the interface. For
	 example, second password item in one interface will have default
	 ID 2. ID is used by some routing protocols to identify which
	 password was used to authenticate protocol packets.

	<tag>generate from "<m/time/"</tag>
	 The start time of the usage of the password for packet signing.
	 The format of <cf><m/time/</cf> is <tt>dd-mm-yyyy HH:MM:SS</tt>.

	<tag>generate to "<m/time/"</tag>
	 The last time of the usage of the password for packet signing.

	<tag>accept from "<m/time/"</tag>
	 The start time of the usage of the password for packet verification.

	<tag>accept to "<m/time/"</tag>
	 The last time of the usage of the password for packet verification.
</descrip>

<chapt>Remote control

<p>You can use the command-line client <file>birdc</file> to talk with
a running BIRD. Communication is done using a <file/bird.ctl/ UNIX
domain socket (unless changed with the <tt/-s/ option given to both
the server and the client). The commands can perform simple actions
such as enabling/disabling of protocols, telling BIRD to show various
information, telling it to show routing table filtered by filter, or
asking BIRD to reconfigure. Press <tt/?/ at any time to get online
help. Option <tt/-r/ can be used to enable a restricted mode of BIRD
client, which allows just read-only commands (<cf/show .../). Option
<tt/-v/ can be passed to the client, to make it dump numeric return
codes along with the messages. You do not necessarily need to use
<file/birdc/ to talk to BIRD, your own applications could do that, too
-- the format of communication between BIRD and <file/birdc/ is stable
(see the programmer's documentation).

Many commands have the <m/name/ of the protocol instance as an argument.
This argument can be omitted if there exists only a single instance.

<p>Here is a brief list of supported functions:

<descrip>
	<tag>dump resources|sockets|interfaces|neighbors|attributes|routes|protocols</tag>
	Dump contents of internal data structures to the debugging output.

	<tag>show status</tag>
	Show router status, that is BIRD version, uptime and time from last reconfiguration.

	<tag>show protocols [all]</tag>
	Show list of protocol instances along with tables they are connected to and protocol status, possibly giving verbose information, if <cf/all/ is specified.

	<tag>show ospf interface [<m/name/] ["<m/interface/"]</tag>
	Show detailed information about OSPF interfaces.

	<tag>show ospf neighbors [<m/name/] ["<m/interface/"]</tag>
	Show a list of OSPF neighbors and a state of adjacency to them.

	<tag>show ospf state [all] [<m/name/]</tag>
	Show detailed information about OSPF areas based on a content
	of the link-state database. It shows network topology, stub
	networks, aggregated networks and routers from other areas and
	external routes. The command shows information about reachable
	network nodes, use option <cf/all/ to show information about
	all network nodes in the link-state database.

	<tag>show ospf topology [all] [<m/name/]</tag>
	Show a topology of OSPF areas based on a content of the
	link-state database.  It is just a stripped-down version of
	'show ospf state'.

	<tag>show static [<m/name/]</tag>
	Show detailed information about static routes.

	<tag>show interfaces [summary]</tag>
	Show the list of interfaces. For each interface, print its type, state, MTU and addresses assigned. 

	<tag>show symbols</tag>
	Show the list of symbols defined in the configuration (names of protocols, routing tables etc.).

	<tag>show route [[for] <m/prefix/|<m/IP/] [table <m/sym/] [filter <m/f/|where <m/c/] [(export|preexport) <m/p/] [protocol <m/p/] [<m/options/]</tag>
	Show contents of a routing table (by default of the main one),
	that is routes, their metrics and (in case the <cf/all/ switch is given)
	all their attributes.

	<p>You can specify a <m/prefix/ if you want to print routes for a
	specific network. If you use <cf>for <m/prefix or IP/</cf>, you'll get
	the entry which will be used for forwarding of packets to the given
	destination. By default, all routes for each network are printed with
	the selected one at the top, unless <cf/primary/ is given in which case
	only the selected route is shown.

	<p>You can also ask for printing only routes processed and accepted by
	a given filter (<cf>filter <m/name/</cf> or <cf>filter { <m/filter/ }
	</cf> or matching a given condition (<cf>where <m/condition/</cf>).
	The <cf/export/ and <cf/preexport/ switches ask for printing of entries
	that are exported to the specified protocol. With <cf/preexport/, the
	export filter of the protocol is skipped.

	<p>You can also select just routes added by a specific protocol.
	<cf>protocol <m/p/</cf>.

	<p>The <cf/stats/ switch requests showing of route statistics (the
	number of networks, number of routes before and after filtering). If
	you use <cf/count/ instead, only the statistics will be printed.

	<tag>configure [soft] ["<m/config file/"]</tag>
	Reload configuration from a given file. BIRD will smoothly
	switch itself to the new configuration, protocols are
	reconfigured if possible, restarted otherwise. Changes in
	filters usually lead to restart of affected protocols. If
	<cf/soft/ option is used, changes in filters does not cause
	BIRD to restart affected protocols, therefore already accepted
	routes (according to old filters) would be still propagated,
	but new routes would be processed according to the new
	filters.

	<tag>enable|disable|restart <m/name/|"<m/pattern/"|all</tag>
	Enable, disable or restart a given protocol instance, instances matching the <cf><m/pattern/</cf> or <cf/all/ instances.

	<tag>reload [in|out] <m/name/|"<m/pattern/"|all</tag>
	
	Reload a given protocol instance, that means re-import routes
	from the protocol instance and re-export preferred routes to
	the instance. If <cf/in/ or <cf/out/ options are used, the
	command is restricted to one direction (re-import or
	re-export).

	This command is useful if appropriate filters have changed but
	the protocol instance was not restarted (or reloaded),
	therefore it still propagates the old set of routes. For example
	when <cf/configure soft/ command was used to change filters.

	Re-export always succeeds, but re-import is protocol-dependent
	and might fail (for example, if BGP neighbor does not support
	route-refresh extension). In that case, re-export is also
	skipped. Note that for the pipe protocol, both directions are
	always reloaded together (<cf/in/ or <cf/out/ options are
	ignored in that case).

	<tag/down/
	Shut BIRD down.

	<tag>debug <m/protocol/|<m/pattern/|all all|off|{ states | routes | filters | events | packets }</tag>
	Control protocol debugging.
</descrip>

<chapt>Filters

<sect>Introduction

<p>BIRD contains a simple programming language. (No, it can't yet read mail :-). There are
two objects in this language: filters and functions. Filters are interpreted by BIRD core when a route is
being passed between protocols and routing tables. The filter language contains control structures such
as if's and switches, but it allows no loops. An example of a filter using many features can be found in <file>filter/test.conf</file>. 

<p>Filter gets the route, looks at its attributes and
modifies some of them if it wishes. At the end, it decides whether to
pass the changed route through (using <cf/accept/) or whether to <cf/reject/ it. A simple filter looks
like this:

<code>
filter not_too_far
int var;
{
	if defined( rip_metric ) then
		var = rip_metric;
	else {
		var = 1;
		rip_metric = 1;
	}
	if rip_metric &gt; 10 then
		reject "RIP metric is too big";
	else
		accept "ok";
}
</code>

<p>As you can see, a filter has a header, a list of local variables, and a body. The header consists of
the <cf/filter/ keyword followed by a (unique) name of filter. The list of local variables consists of
<cf><M>type name</M>;</cf> pairs where each pair defines one local variable. The body consists of
<cf> { <M>statements</M> }</cf>. Each <m/statement/ is terminated by a <cf/;/. You can group
several statements to a single compound statement by using braces (<cf>{ <M>statements</M> }</cf>) which is useful if
you want to make a bigger block of code conditional.

<p>BIRD supports functions, so that you don't have to repeat the same blocks of code over and
over. Functions can have zero or more parameters and they can have local variables. Recursion is not allowed. Function definitions
look like this:

<code>
function name ()
int local_variable;
{
	local_variable = 5;
}

function with_parameters (int parameter)
{
	print parameter;
}
</code>

<p>Unlike in C, variables are declared after the <cf/function/ line, but before the first <cf/{/. You can't declare
variables in nested blocks. Functions are called like in C: <cf>name();
with_parameters(5);</cf>. Function may return values using the <cf>return <m/[expr]/</cf>
command. Returning a value exits from current function (this is similar to C).

<p>Filters are declared in a way similar to functions except they can't have explicit
parameters. They get a route table entry as an implicit parameter, it is also passed automatically 
to any functions called. The filter must terminate with either
<cf/accept/ or <cf/reject/ statement. If there's a runtime error in filter, the route
is rejected. 

<p>A nice trick to debug filters is to use <cf>show route filter
<m/name/</cf> from the command line client. An example session might look
like:

<code>
pavel@bug:~/bird$ ./birdc -s bird.ctl
BIRD 0.0.0 ready.
bird> show route
10.0.0.0/8         dev eth0 [direct1 23:21] (240)
195.113.30.2/32    dev tunl1 [direct1 23:21] (240)
127.0.0.0/8        dev lo [direct1 23:21] (240)
bird> show route ?
show route [<prefix>] [table <t>] [filter <f>] [all] [primary]...
bird> show route filter { if 127.0.0.5 &tilde; net then accept; }
127.0.0.0/8        dev lo [direct1 23:21] (240)
bird>
</code>

<sect>Data types

<p>Each variable and each value has certain type. Booleans, integers and enums are
incompatible with each other (that is to prevent you from shooting in the foot).

<descrip>
	<tag/bool/ This is a boolean type, it can have only two values, <cf/true/ and
	  <cf/false/. Boolean is the only type you can use in <cf/if/
	  statements.

	<tag/int/ This is a general integer type, you can expect it to store signed values from -2000000000
	  to +2000000000. Overflows are not checked. You can use <cf/0x1234/ syntax to write hexadecimal values.

	<tag/pair/ This is a pair of two short integers. Each component can have values from 0 to
	  65535. Literals of this type are written as <cf/(1234,5678)/. The same syntax can also be
	  used to construct a pair from two arbitrary integer expressions (for example <cf/(1+2,a)/).

	<tag/quad/ This is a dotted quad of numbers used to represent
	  router IDs (and others).  Each component can have a value
	  from 0 to 255. Literals of this type are written like IPv4
	  addresses.

	<tag/string/ This is a string of characters. There are no ways to modify strings in
	  filters. You can pass them between functions, assign them to variables of type <cf/string/, print
	  such variables, but you can't concatenate two strings. String literals
	  are written as <cf/"This is a string constant"/.

	<tag/ip/ This type can hold a single IP address. Depending on the compile-time configuration of BIRD you are using, it
	  is either an IPv4 or IPv6 address. IP addresses are written in the standard notation (<cf/10.20.30.40/ or <cf/fec0:3:4::1/). You can apply special operator <cf>.mask(<M>num</M>)</cf>
	  on values of type ip. It masks out all but first <cf><M>num</M></cf> bits from the IP
	  address. So <cf/1.2.3.4.mask(8) = 1.0.0.0/ is true.

	<tag/prefix/ This type can hold a network prefix consisting of IP address and prefix length. Prefix literals are written as
	  <cf><M>ipaddress</M>/<M>pxlen</M></cf>, or
	  <cf><m>ipaddress</m>/<m>netmask</m></cf>. There are two special
	  operators on prefixes:
	  <cf/.ip/ which extracts the IP address from the pair, and <cf/.len/, which separates prefix
	  length from the pair. So <cf>1.2.0.0/16.pxlen = 16</cf> is true.

	<tag/ec/ This is a specialized type used to represent BGP
	  extended community values. It is essentially a 64bit value,
	  literals of this type are usually written as <cf>(<m/kind/,
	  <m/key/, <m/value/)</cf>, where <cf/kind/ is a kind of
	  extended community (e.g. <cf/rt/ / <cf/ro/ for a route
	  target / route origin communities), the format and possible
	  values of <cf/key/ and <cf/value/ are usually integers, but
	  it depends on the used kind. Similarly to pairs, ECs can be
	  constructed using expressions for <cf/key/ and
	  <cf/value/ parts, (e.g. <cf/(ro, myas, 3*10)/, where
	  <cf/myas/ is an integer variable).
 
	<tag/int|pair|quad|ip|prefix|ec|enum set/
	  Filters recognize four types of sets. Sets are similar to strings: you can pass them around
	  but you can't modify them. Literals of type <cf>int set</cf> look like <cf>
	  [ 1, 2, 5..7 ]</cf>. As you can see, both simple values and ranges are permitted in
	  sets.

	  For pair sets, expressions like <cf/(123,*)/ can be used to denote ranges (in
	  that case <cf/(123,0)..(123,65535)/). You can also use <cf/(123,5..100)/ for range
	  <cf/(123,5)..(123,100)/. You can also use <cf/*/ and <cf/a..b/ expressions
	  in the first part of a pair, note that such expressions are translated to a set
	  of intervals, which may be memory intensive. E.g. <cf/(*,4..20)/ is translated to
	  <cf/(0,4..20), (1,4..20), (2,4..20), ... (65535, 4..20)/.

	  EC sets use similar expressions like pair sets, e.g. <cf/(rt, 123, 10..20)/ 
	  or <cf/(ro, 123, *)/. Expressions requiring the translation (like  <cf/(rt, *, 3)/)
	  are not allowed (as they usually have 4B range for ASNs).

	  You can also use expressions for int, pair and EC set values. However it must
	  be possible to evaluate these expressions before daemon boots. So you can use
	  only constants inside them. E.g.
	<code>
	 define one=1;
	 define myas=64500;
	 int set odds;
	 pair set ps;
	 ec set es;

	 odds = [ one, 2+1, 6-one, 2*2*2-1, 9, 11 ];
	 ps = [ (1,one+one), (3,4)..(4,8), (5,*), (6,3..6), (7..9,*) ];
	 es = [ (rt, myas, 3*10), (rt, myas+one, 0..16*16*16-1), (ro, myas+2, *) ];
	</code>

	  Sets of prefixes are special: their literals does not allow ranges, but allows
	  prefix patterns that are written as <cf><M>ipaddress</M>/<M>pxlen</M>{<M>low</M>,<M>high</M>}</cf>.
	  Prefix <cf><m>ip1</m>/<m>len1</m></cf> matches prefix pattern <cf><m>ip2</m>/<m>len2</m>{<m>l</m>,<m>h</m>}</cf> if 
	  the first <cf>min(len1, len2)</cf> bits of <cf/ip1/ and <cf/ip2/ are identical and <cf>len1 &lt;= ip1 &lt;= len2</cf>.
	  A valid prefix pattern has to satisfy <cf>low &lt;= high</cf>, but <cf/pxlen/ is not constrained by <cf/low/
	  or <cf/high/. Obviously, a prefix matches a prefix set literal if it matches any prefix pattern in the
	  prefix set literal.

	  There are also two shorthands for prefix patterns: <cf><m>address</m>/<m/len/+</cf> is a shorthand for
	  <cf><m>address</m>/<m/len/{<m/len/,<m/maxlen/}</cf> (where <cf><m>maxlen</m></cf> is 32 for IPv4 and 128 for IPv6), 
	  that means network prefix <cf><m>address</m>/<m/len/</cf> and all its subnets. <cf><m>address</m>/<m/len/-</cf>
	  is a shorthand for <cf><m>address</m>/<m/len/{0,<m/len/}</cf>, that means network prefix <cf><m>address</m>/<m/len/</cf>
	  and all its supernets (network prefixes that contain it).

	  For example, <cf>[ 1.0.0.0/8, 2.0.0.0/8+, 3.0.0.0/8-, 4.0.0.0/8{16,24} ]</cf> matches
	  prefix <cf>1.0.0.0/8</cf>, all subprefixes of <cf>2.0.0.0/8</cf>, all superprefixes of <cf>3.0.0.0/8</cf> and prefixes
	  <cf/4.X.X.X/ whose prefix length is 16 to 24. <cf>[ 0.0.0.0/0{20,24} ]</cf> matches all prefixes (regardless of
	  IP address) whose prefix length is 20 to 24, <cf>[ 1.2.3.4/32- ]</cf> matches any prefix that contains IP address
	  <cf>1.2.3.4</cf>. <cf>1.2.0.0/16 &tilde; [ 1.0.0.0/8{15,17} ]</cf> is true,
	  but <cf>1.0.0.0/16 &tilde; [ 1.0.0.0/8- ]</cf> is false.

	  Cisco-style patterns like <cf>10.0.0.0/8 ge 16 le 24</cf> can be expressed
	  in BIRD as <cf>10.0.0.0/8{16,24}</cf>, <cf>192.168.0.0/16 le 24</cf> as 
	  <cf>192.168.0.0/16{16,24}</cf> and <cf>192.168.0.0/16 ge 24</cf> as
	  <cf>192.168.0.0/16{24,32}</cf>.

	<tag/enum/
	  Enumeration types are fixed sets of possibilities. You can't define your own
	  variables of such type, but some route attributes are of enumeration
	  type. Enumeration types are incompatible with each other.

	<tag/bgppath/
	  BGP path is a list of autonomous system numbers. You can't write literals of this type.
	  There are several special operators on bgppaths:

	  <cf><m/P/.first</cf> returns the first ASN (the neighbor ASN) in path <m/P/.

          <cf><m/P/.last</cf> returns the last ASN (the source ASN) in path <m/P/.

	  Both <cf/first/ and <cf/last/ return zero if there is no appropriate ASN,
          for example if the path contains an AS set element as the first (or the last) part.

          <cf><m/P/.len</cf> returns the length of path <m/P/.

          <cf>prepend(<m/P/,<m/A/)</cf> prepends ASN <m/A/ to path <m/P/ and returns the result.
          Statement <cf><m/P/ = prepend(<m/P/, <m/A/);</cf> can be shortened to
          <cf><m/P/.prepend(<m/A/);</cf> if <m/P/ is appropriate route attribute
          (for example <cf/bgp_path/).

	<tag/bgpmask/
	  BGP masks are patterns used for BGP path matching
	  (using <cf>path &tilde; [= 2 3 5 * =]</cf> syntax). The masks
	  resemble wildcard patterns as used by UNIX shells. Autonomous
	  system numbers match themselves, <cf/*/ matches any (even empty)
	  sequence of arbitrary AS numbers and <cf/?/ matches one arbitrary AS number.
	  For example, if <cf>bgp_path</cf> is 4 3 2 1, then:
	  <tt>bgp_path &tilde; [= * 4 3 * =]</tt> is true, but 
	  <tt>bgp_path &tilde; [= * 4 5 * =]</tt> is false.
	  BGP mask expressions can also contain integer expressions enclosed in parenthesis
	  and integer variables, for example <tt>[= * 4 (1+2) a =]</tt>.
	  There is also old syntax that uses / .. / instead of [= .. =] and ? instead of *.

	<tag/clist/
	  Clist is similar to a set, except that unlike other sets, it
	  can be modified. The type is used for community list (a set
	  of pairs) and for cluster list (a set of quads). There exist
	  no literals of this type. There are three special operators on
	  clists:

          <cf>add(<m/C/,<m/P/)</cf> adds pair (or quad) <m/P/ to clist
	  <m/C/ and returns the result.  If item <m/P/ is already in
	  clist <m/C/, it does nothing.

          <cf>delete(<m/C/,<m/P/)</cf> deletes pair (or quad)
	  <m/P/ from clist <m/C/ and returns the result.  If clist
	  <m/C/ does not contain item <m/P/, it does nothing.
	  <m/P/ may also be a pair (or quad) set, in that case the
	  operator deletes all items from clist <m/C/ that are also
	  members of set <m/P/.

          <cf>filter(<m/C/,<m/P/)</cf> deletes all items from clist
	  <m/C/ that are not members of pair (or quad) set <m/P/.
	  I.e., <cf/filter/ do the same as <cf/delete/ with inverted
	  set <m/P/.

          Statement <cf><m/C/ = add(<m/C/, <m/P/);</cf> can be shortened to
          <cf><m/C/.add(<m/P/);</cf> if <m/C/ is appropriate route
          attribute (for example <cf/bgp_community/). Similarly for
          <cf/delete/ and <cf/filter/.

	<tag/eclist/
	  Eclist is a data type used for BGP extended community lists.
	  Eclists are very similar to clists, but they are sets of ECs
	  instead of pairs. The same operations (like <cf/add/,
	  <cf/delete/, or <cf/&tilde;/ membership operator) can be
	  used to modify or test eclists, with ECs instead of pairs as
	  arguments.
</descrip>

<sect>Operators

<p>The filter language supports common integer operators <cf>(+,-,*,/)</cf>, parentheses <cf/(a*(b+c))/, comparison
<cf/(a=b, a!=b, a&lt;b, a&gt;=b)/. Logical operations include unary not (<cf/!/), and (<cf/&amp;&amp;/) and or (<cf/&verbar;&verbar;/). 
Special operators include <cf/&tilde;/ for "is element of a set" operation - it can be
used on element and set of elements of the same type (returning true if element is contained in the given set), or
on two strings (returning true if first string matches a shell-like pattern stored in second string) or on IP and prefix (returning true if IP is within the range defined by that prefix), or on
prefix and prefix (returning true if first prefix is more specific than second one) or on bgppath and bgpmask (returning true if the path matches the mask) or on pair/quad and clist (returning true if the pair/quad is element of the clist) or on clist and pair/quad set (returning true if there is an element of the clist that is also a member of the pair/quad set).


<sect>Control structures

<p>Filters support two control structures: conditions and case switches. 

<p>Syntax of a condition is: <cf>if
<M>boolean expression</M> then <M>command1</M>; else <M>command2</M>;</cf> and you can use <cf>{
<M>command_1</M>; <M>command_2</M>; <M>...</M> }</cf> instead of either command. The <cf>else</cf>
clause may be omitted. If the <cf><m>boolean expression</m></cf> is true, <cf><m>command1</m></cf> is executed, otherwise <cf><m>command2</m></cf> is executed.

<p>The <cf>case</cf> is similar to case from Pascal. Syntax is <cf>case <m/expr/ { else: |
<m/num_or_prefix [ .. num_or_prefix]/: <m/statement/ ; [ ... ] }</cf>. The expression after
<cf>case</cf> can be of any type which can be on the left side of the &tilde; operator and anything that could
be a member of a set is allowed before <cf/:/. Multiple commands are allowed without <cf/{}/ grouping.
If <cf><m/expr/</cf> matches one of the <cf/:/ clauses, statements between it and next <cf/:/ statement are executed. If <cf><m/expr/</cf> matches neither of the <cf/:/ clauses, the statements after <cf/else:/ are executed.

<p>Here is example that uses <cf/if/ and <cf/case/ structures:

<code>
case arg1 {
	2: print "two"; print "I can do more commands without {}";
	3 .. 5: print "three to five";
	else: print "something else";
}

if 1234 = i then printn "."; else { 
  print "not 1234"; 
  print "You need {} around multiple commands"; 
}
</code>

<sect>Route attributes

<p>A filter is implicitly passed a route, and it can access its
attributes just like it accesses variables. Attempts to access undefined
attribute result in a runtime error; you can check if an attribute is
defined by using the <cf>defined( <m>attribute</m> )</cf> operator.
One notable exception to this rule are attributes of clist type, where
undefined value is regarded as empty clist for most purposes.

<descrip>
	<tag><m/prefix/ net</tag>
	Network the route is talking about. Read-only. (See the chapter about routing tables.)

	<tag><m/enum/ scope</tag>
	The scope of the route. Possible values: <cf/SCOPE_HOST/ for
	routes local to this host, <cf/SCOPE_LINK/ for those specific
	for a physical link, <cf/SCOPE_SITE/ and
	<cf/SCOPE_ORGANIZATION/ for private routes and
	<cf/SCOPE_UNIVERSE/ for globally visible routes. This
	attribute is not interpreted by BIRD and can be used to mark
	routes in filters. The default value for new routes is
	<cf/SCOPE_UNIVERSE/.

	<tag><m/int/ preference</tag>
	Preference of the route. Valid values are 0-65535. (See the chapter about routing tables.)

	<tag><m/ip/ from</tag>
	The router which the route has originated from. Read-only.
	
	<tag><m/ip/ gw</tag>
	Next hop packets routed using this route should be forwarded to.

	<tag><m/string/ proto</tag>
	The name of the protocol which the route has been imported from. Read-only.

	<tag><m/enum/ source</tag>
	what protocol has told me about this route. Possible values: <cf/RTS_DUMMY/, <cf/RTS_STATIC/, <cf/RTS_INHERIT/, <cf/RTS_DEVICE/, <cf/RTS_STATIC_DEVICE/, <cf/RTS_REDIRECT/, <cf/RTS_RIP/, <cf/RTS_OSPF/, <cf/RTS_OSPF_IA/, <cf/RTS_OSPF_EXT1/, <cf/RTS_OSPF_EXT2/, <cf/RTS_BGP/, <cf/RTS_PIPE/.

	<tag><m/enum/ cast</tag>

	Route type (Currently <cf/RTC_UNICAST/ for normal routes,
	<cf/RTC_BROADCAST/, <cf/RTC_MULTICAST/, <cf/RTC_ANYCAST/ will
	be used in the future for broadcast, multicast and anycast
	routes). Read-only.

	<tag><m/enum/ dest</tag>
	Type of destination the packets should be sent to (<cf/RTD_ROUTER/ for forwarding to a neighboring router, <cf/RTD_DEVICE/ for routing to a directly-connected network, <cf/RTD_BLACKHOLE/ for packets to be silently discarded, <cf/RTD_UNREACHABLE/, <cf/RTD_PROHIBIT/ for packets that should be returned with ICMP host unreachable / ICMP administratively prohibited messages). Read-only.

	<tag><m/int/ igp_metric</tag>
	The optional attribute that can be used to specify a distance
	to the network for routes that do not have a native protocol
	metric attribute (like <cf/ospf_metric1/ for OSPF routes). It
	is used mainly by BGP to compare internal distances to boundary
	routers (see below). It is also used when the route is exported
	to OSPF as a default value for OSPF type 1 metric.
</descrip>

<p>There also exist some protocol-specific attributes which are described in the corresponding protocol sections.

<sect>Other statements

<p>The following statements are available:

<descrip>
	<tag><m/variable/ = <m/expr/</tag> Set variable to a given value.

	<tag>accept|reject [ <m/expr/ ]</tag> Accept or reject the route, possibly printing <cf><m>expr</m></cf>.

	<tag>return <m/expr/</tag> Return <cf><m>expr</m></cf> from the current function, the function ends at this point.

	<tag>print|printn <m/expr/ [<m/, expr.../]</tag>
	Prints given expressions; useful mainly while debugging
	filters. The <cf/printn/ variant does not terminate the line.

	<tag>quitbird</tag>
	Terminates BIRD. Useful when debugging the filter interpreter.
</descrip>

<chapt>Protocols

<sect>BGP

<p>The Border Gateway Protocol is the routing protocol used for backbone
level routing in the today's Internet. Contrary to the other protocols, its convergence
doesn't rely on all routers following the same rules for route selection,
making it possible to implement any routing policy at any router in the
network, the only restriction being that if a router advertises a route,
it must accept and forward packets according to it.

<p>BGP works in terms of autonomous systems (often abbreviated as
AS). Each AS is a part of the network with common management and
common routing policy. It is identified by a unique 16-bit number
(ASN).  Routers within each AS usually exchange AS-internal routing
information with each other using an interior gateway protocol (IGP,
such as OSPF or RIP). Boundary routers at the border of
the AS communicate global (inter-AS) network reachability information with
their neighbors in the neighboring AS'es via exterior BGP (eBGP) and
redistribute received information to other routers in the AS via
interior BGP (iBGP).

<p>Each BGP router sends to its neighbors updates of the parts of its
routing table it wishes to export along with complete path information
(a list of AS'es the packet will travel through if it uses the particular
route) in order to avoid routing loops.

<p>BIRD supports all requirements of the BGP4 standard as defined in
RFC 4271<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc4271.txt">
It also supports the community attributes
(RFC 1997<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc1997.txt">),
capability negotiation
(RFC 3392<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc3392.txt">),
MD5 password authentication
(RFC 2385<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc2385.txt">),
extended communities
(RFC 4360<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc4360.txt">),
route reflectors 
(RFC 4456<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc4456.txt">),
multiprotocol extensions
(RFC 4760<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc4760.txt">),
4B AS numbers 
(RFC 4893<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc4893.txt">),
and 4B AS numbers in extended communities
(RFC 5668<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc5668.txt">).


For IPv6, it uses the standard multiprotocol extensions defined in
RFC 2283<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc2283.txt">
including changes described in the
latest draft<htmlurl url="ftp://ftp.rfc-editor.org/internet-drafts/draft-ietf-idr-bgp4-multiprotocol-v2-05.txt">
and applied to IPv6 according to
RFC 2545<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc2545.txt">.

<sect1>Route selection rules

<p>BGP doesn't have any simple metric, so the rules for selection of an optimal
route among multiple BGP routes with the same preference are a bit more complex
and they are implemented according to the following algorithm. It starts the first
rule, if there are more "best" routes, then it uses the second rule to choose
among them and so on.

<itemize>
	<item>Prefer route with the highest Local Preference attribute.
	<item>Prefer route with the shortest AS path.
	<item>Prefer IGP origin over EGP and EGP origin over incomplete.
	<item>Prefer the lowest value of the Multiple Exit Discriminator.
	<item>Prefer routes received via eBGP over ones received via iBGP.
	<item>Prefer routes with lower internal distance to a boundary router.
	<item>Prefer the route with the lowest value of router ID of the
	advertising router.
</itemize>

<sect1>IGP routing table

<p>BGP is mainly concerned with global network reachability and with
routes to other autonomous systems. When such routes are redistributed
to routers in the AS via BGP, they contain IP addresses of a boundary
routers (in route attribute NEXT_HOP). BGP depends on existing IGP
routing table with AS-internal routes to determine immediate next hops
for routes and to know their internal distances to boundary routers
for the purpose of BGP route selection. In BIRD, there is usually
one routing table used for both IGP routes and BGP routes.

<sect1>Configuration

<p>Each instance of the BGP corresponds to one neighboring router.
This allows to set routing policy and all the other parameters differently
for each neighbor using the following configuration parameters:

<descrip>
	<tag>local [<m/ip/] as <m/number/</tag> Define which AS we
	are part of. (Note that contrary to other IP routers, BIRD is
	able to act as a router located in multiple AS'es
	simultaneously, but in such cases you need to tweak the BGP
	paths manually in the filters to get consistent behavior.)
	Optional <cf/ip/ argument specifies a source address,
	equivalent to the <cf/source address/ option (see below).
	This parameter is mandatory.

	<tag>neighbor <m/ip/ as <m/number/</tag> Define neighboring router
	this instance will be talking to and what AS it's located in. Unless
	you use the <cf/multihop/ clause, it must be directly connected to one
	of your router's interfaces. In case the neighbor is in the same AS
	as we are, we automatically switch to iBGP. This parameter is mandatory.

	<tag>multihop [<m/number/]</tag> Configure multihop BGP
	session to a neighbor that isn't directly connected.
	Accurately, this option should be used if the configured
	neighbor IP address does not match with any local network
	subnets. Such IP address have to be reachable through system
	routing table. For multihop BGP it is recommended to
	explicitly configure <cf/source address/ to have it
	stable. Optional <cf/number/ argument can be used to specify
	the number of hops (used for TTL). Note that the number of
	networks (edges) in a path is counted, i.e. if two BGP
	speakers are separated by one router, the number of hops is
	2. Default: switched off.

	<tag>source address <m/ip/</tag> Define local address we
	should use for next hop calculation and as a source address
	for the BGP session. Default: the address of the local
	end of the interface our neighbor is connected to.

	<tag>next hop self</tag> Avoid calculation of the Next Hop
	attribute and always advertise our own source address as a
	next hop.  This needs to be used only occasionally to
	circumvent misconfigurations of other routers.  Default:
	disabled.

	<tag>missing lladdr self|drop|ignore</tag>Next Hop attribute
	in BGP-IPv6 sometimes contains just the global IPv6 address,
	but sometimes it has to contain both global and link-local
	IPv6 addresses. This option specifies what to do if BIRD have
	to send both addresses but does not know link-local address.
	This situation might happen when routes from other protocols
	are exported to BGP, or when improper updates are received
	from BGP peers.  <cf/self/ means that BIRD advertises its own
	local address instead. <cf/drop/ means that BIRD skips that
	prefixes and logs error. <cf/ignore/ means that BIRD ignores
	the problem and sends just the global address (and therefore
	forms improper BGP update). Default: <cf/self/, unless BIRD
	is configured as a route server (option <cf/rs client/), in
	that case default is <cf/ignore/, because route servers usually
	do not forward packets themselves.

	<tag>gateway direct|recursive</tag>For received routes, their
	<cf/gw/ (immediate next hop) attribute is computed from
	received <cf/bgp_next_hop/ attribute. This option specifies
	how it is computed. Direct mode means that the IP address from
	<cf/bgp_next_hop/ is used if it is directly reachable,
	otherwise the neighbor IP address is used. Recursive mode
	means that the gateway is computed by an IGP routing table
	lookup for the IP address from <cf/bgp_next_hop/. Recursive
	mode is the behavior specified by the BGP standard. Direct
	mode is simpler, does not require any routes in a routing
	table, and was used in older versions of BIRD, but does not
	handle well nontrivial iBGP setups and multihop. Default:
	<cf/direct/ for singlehop eBGP, <cf/recursive/ otherwise.

	<tag>igp table <m/name/</tag> Specifies a table that is used
	as an IGP routing table. Default: the same as the table BGP is
	connected to.
	
	<tag>ttl security <m/switch/</tag> Use GTSM (RFC 5082 - the
	generalized TTL security mechanism). GTSM protects against
	spoofed packets by ignoring received packets with a smaller
	than expected TTL. To work properly, GTSM have to be enabled
	on both sides of a BGP session. If both <cf/ttl security/ and
	<cf/multihop/ options are enabled, <cf/multihop/ option should
	specify proper hop value to compute expected TTL. Kernel
	support required: Linux: 2.6.34+ (IPv4), 2.6.35+ (IPv6), BSD:
	since long ago, IPv4 only. Note that full (ICMP protection,
	for example) RFC 5082 support is provided by Linux
	only. Default: disabled.
	
	<tag>password <m/string/</tag> Use this password for MD5 authentication
	of BGP sessions. Default: no authentication. Password has to be set by
	external utility (e.g. setkey(8)) on BSD systems.

	<tag>passive <m/switch/</tag> Standard BGP behavior is both
        initiating outgoing connections and accepting incoming
        connections. In passive mode, outgoing connections are not
        initiated. Default: off.

	<tag>rr client</tag> Be a route reflector and treat the neighbor as
	a route reflection client. Default: disabled.

	<tag>rr cluster id <m/IPv4 address/</tag> Route reflectors use cluster id
	to avoid route reflection loops. When there is one route reflector in a cluster
	it usually uses its router id as a cluster id, but when there are more route
	reflectors in a cluster, these need to be configured (using this option) to
	use a common cluster id. Clients in a cluster need not know their cluster
	id and this option is not allowed for them. Default: the same as router id.

	<tag>rs client</tag> Be a route server and treat the neighbor
	as a route server client. A route server is used as a
	replacement for full mesh EBGP routing in Internet exchange
	points in a similar way to route reflectors used in IBGP routing.
	BIRD does not implement obsoleted RFC 1863, but uses ad-hoc implementation,
	which behaves like plain EBGP but reduces modifications to advertised route
	attributes to be transparent (for example does not prepend its AS number to
	AS PATH attribute and keeps MED attribute). Default: disabled.

	<tag>enable route refresh <m/switch/</tag> When BGP speaker
	changes its import filter, it has to re-examine all routes
	received from its neighbor against the new filter. As these
	routes might not be available, there is a BGP protocol
	extension Route Refresh (specified in RFC 2918) that allows
	BGP speaker to request re-advertisement of all routes from its
	neighbor. This option specifies whether BIRD advertises this
	capability and accepts such requests. Even when disabled, BIRD
	can send route refresh requests. Default: on.

	<tag>interpret communities <m/switch/</tag> RFC 1997 demands
	that BGP speaker should process well-known communities like
	no-export (65535, 65281) or no-advertise (65535, 65282). For
	example, received route carrying a no-adverise community
	should not be advertised to any of its neighbors. If this
	option is enabled (which is by default), BIRD has such
	behavior automatically (it is evaluated when a route is
	exported to the BGP protocol just before the export filter).
	Otherwise, this integrated processing of well-known
	communities is disabled. In that case, similar behavior can be
	implemented in the export filter.  Default: on.

	<tag>enable as4 <m/switch/</tag> BGP protocol was designed to use 2B AS numbers
	and was extended later to allow 4B AS number. BIRD supports 4B AS extension,
	but by disabling this option it can be persuaded not to advertise it and
	to maintain old-style sessions with its neighbors. This might be useful for
	circumventing bugs in neighbor's implementation of 4B AS extension.
	Even when disabled (off), BIRD behaves internally as AS4-aware BGP router.
	Default: on.

	<tag>capabilities <m/switch/</tag> Use capability advertisement
	to advertise optional capabilities. This is standard behavior
	for newer BGP implementations, but there might be some older
	BGP implementations that reject such connection attempts.
	When disabled (off), features that request it (4B AS support)
	are also disabled. Default: on, with automatic fallback to
	off when received capability-related error.

	<tag>advertise ipv4 <m/switch/</tag> Advertise IPv4 multiprotocol capability.
	This is not a correct behavior according to the strict interpretation
	of RFC 4760, but it is widespread and required by some BGP
	implementations (Cisco and Quagga). This option is relevant
	to IPv4 mode with enabled capability advertisement only. Default: on.

	<tag>route limit <m/number/</tag> The maximal number of routes
	that may be imported from the protocol. If the route limit is
	exceeded, the connection is closed with error. Default: no limit.

	<tag>disable after error <m/switch/</tag> When an error is encountered (either
	locally or by the other side), disable the instance automatically
	and wait for an administrator to fix the problem manually. Default: off.

	<tag>hold time <m/number/</tag> Time in seconds to wait for a Keepalive
	message from the other side before considering the connection stale.
	Default: depends on agreement with the neighboring router, we prefer
	240 seconds if the other side is willing to accept it.

	<tag>startup hold time <m/number/</tag> Value of the hold timer used
	before the routers have a chance to exchange open messages and agree
	on the real value. Default: 240 seconds.

	<tag>keepalive time <m/number/</tag> Delay in seconds between sending
	of two consecutive Keepalive messages. Default: One third of the hold time.

	<tag>connect retry time <m/number/</tag> Time in seconds to wait before
	retrying a failed attempt to connect. Default: 120 seconds.

	<tag>start delay time <m/number/</tag> Delay in seconds between protocol
	startup and the first attempt to connect. Default: 5 seconds.

	<tag>error wait time <m/number/,<m/number/</tag> Minimum and maximum delay in seconds between a protocol
	failure (either local or reported by the peer) and automatic restart.
	Doesn't apply when <cf/disable after error/ is configured. If consecutive
	errors happen, the delay is increased exponentially until it reaches the maximum. Default: 60, 300.

	<tag>error forget time <m/number/</tag> Maximum time in seconds between two protocol
	failures to treat them as a error sequence which makes the <cf/error wait time/
	increase exponentially. Default: 300 seconds.

	<tag>path metric <m/switch/</tag> Enable comparison of path lengths
	when deciding which BGP route is the best one. Default: on.

	<tag>med metric <m/switch/</tag> Enable comparison of MED
	attributes (during best route selection) even between routes
	received from different ASes.  This may be useful if all MED
	attributes contain some consistent metric, perhaps enforced in
	import filters of AS boundary routers. If this option is
	disabled, MED attributes are compared only if routes are
	received from the same AS (which is the standard behavior).
	Default: off.

	<tag>igp metric <m/switch/</tag> Enable comparison of internal
 	distances to boundary routers during best route selection. Default: on.

	<tag>prefer older <m/switch/</tag> Standard route selection algorithm
	breaks ties by comparing router IDs. This changes the behavior
	to prefer older routes (when both are external and from different
	peer). For details, see RFC 5004. Default: off.

	<tag>default bgp_med <m/number/</tag> Value of the Multiple Exit
	Discriminator to be used during route selection when the MED attribute
	is missing. Default: 0.

	<tag>default bgp_local_pref <m/number/</tag> A default value
	for the Local Preference attribute. It is used when a new
	Local Preference attribute is attached to a route by the BGP
	protocol itself (for example, if a route is received through
	eBGP and therefore does not have such attribute). Default: 100
	(0 in pre-1.2.0 versions of BIRD).
</descrip>

<sect1>Attributes

<p>BGP defines several route attributes. Some of them (those marked with `<tt/I/' in the
table below) are available on internal BGP connections only, some of them (marked
with `<tt/O/') are optional.

<descrip>
	<tag>bgppath <cf/bgp_path/</tag> Sequence of AS numbers describing the AS path
	the packet will travel through when forwarded according to the particular route.
	In case of internal BGP it doesn't contain the number of the local AS.

	<tag>int <cf/bgp_local_pref/ [I]</tag> Local preference value used for
	selection among multiple BGP routes (see the selection rules above). It's
	used as an additional metric which is propagated through the whole local AS.

	<tag>int <cf/bgp_med/ [O]</tag> The Multiple Exit Discriminator of the route
	is an optional attribute which is used on external (inter-AS) links to
	convey to an adjacent AS the optimal entry point into the local AS.
	The received attribute is also propagated over internal BGP links.
	The attribute value is zeroed when a route is exported to an external BGP
	instance to ensure that the attribute received from a neighboring AS is
	not propagated to other neighboring ASes. A new value might be set in
	the export filter of an external BGP instance.
	See RFC 4451<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc4451.txt">
	for further discussion of BGP MED attribute.

	<tag>enum <cf/bgp_origin/</tag> Origin of the route: either <cf/ORIGIN_IGP/
	if the route has originated in an interior routing protocol or
	<cf/ORIGIN_EGP/ if it's been imported from the <tt>EGP</tt> protocol
	(nowadays it seems to be obsolete) or <cf/ORIGIN_INCOMPLETE/ if the origin
	is unknown.

	<tag>ip <cf/bgp_next_hop/</tag> Next hop to be used for forwarding of packets
	to this destination. On internal BGP connections, it's an address of the
	originating router if it's inside the local AS or a boundary router the
	packet will leave the AS through if it's an exterior route, so each BGP
	speaker within the AS has a chance to use the shortest interior path
	possible to this point.

	<tag>void <cf/bgp_atomic_aggr/ [O]</tag> This is an optional attribute
	which carries no value, but the sole presence of which indicates that the route
	has been aggregated from multiple routes by some router on the path from
	the originator.

<!-- we don't handle aggregators right since they are of a very obscure type
	<tag>bgp_aggregator</tag>
-->
	<tag>clist <cf/bgp_community/ [O]</tag> List of community values associated
	with the route. Each such value is a pair (represented as a <cf/pair/ data
	type inside the filters) of 16-bit integers, the first of them containing the number of the AS which defines
	the community and the second one being a per-AS identifier. There are lots
	of uses of the community mechanism, but generally they are used to carry
	policy information like "don't export to USA peers". As each AS can define
	its own routing policy, it also has a complete freedom about which community
	attributes it defines and what will their semantics be.

	<tag>eclist <cf/bgp_ext_community/ [O]</tag> List of extended community
	values associated with the route. Extended communities have similar usage
	as plain communities, but they have an extended range (to allow 4B ASNs)
	and a nontrivial structure with a type field. Individual community values are
	represented using an <cf/ec/ data type inside the filters.

	<tag>quad <cf/bgp_originator_id/ [I, O]</tag> This attribute is created by the
	route reflector when reflecting the route and contains the router ID of the
	originator of the route in the local AS.

	<tag>clist <cf/bgp_cluster_list/ [I, O]</tag> This attribute contains a list
	of cluster IDs of route reflectors. Each route reflector prepends its
	cluster ID when reflecting the route.
</descrip>

<sect1>Example

<p><code>
protocol bgp {
	local as 65000;			     # Use a private AS number
	neighbor 198.51.100.130 as 64496;    # Our neighbor ...
	multihop;			     # ... which is connected indirectly
	export filter {			     # We use non-trivial export rules
		if source = RTS_STATIC then { # Export only static routes
		        # Assign our community
			bgp_community.add((65000,64501));
			# Artificially increase path length
			# by advertising local AS number twice
			if bgp_path ~ [= 65000 =] then
				bgp_path.prepend(65000);
			accept;
		}
		reject;
	};
	import all;
	source address 198.51.100.14;	# Use a non-standard source address
}
</code>

<sect>Device

<p>The Device protocol is not a real routing protocol.  It doesn't generate
any routes and it only serves as a module for getting information about network
interfaces from the kernel.

<p>Except for very unusual circumstances, you probably should include
this protocol in the configuration since almost all other protocols
require network interfaces to be defined for them to work with.

<sect1>Configuration

<p><descrip>
	<tag>scan time <m/number/</tag> Time in seconds between two scans
	of the network interface list. On systems where we are notified about
	interface status changes asynchronously (such as newer versions of
	Linux), we need to scan the list only in order to avoid confusion by lost
	notification messages, so the default time is set to a large value.

	<tag>primary  [ "<m/mask/" ] <m/prefix/</tag>
	If a network interface has more than one network address, BIRD
	has to choose one of them as a primary one. By default, BIRD
	chooses the lexicographically smallest address as the primary
	one.

	This option allows to specify which network address should be
	chosen as a primary one. Network addresses that match
	<m/prefix/ are preferred to non-matching addresses. If more
	<cf/primary/ options are used, the first one has the highest
	preference. If "<m/mask/" is specified, then such
	<cf/primary/ option is relevant only to matching network
	interfaces.

	In all cases, an address marked by operating system as
	secondary cannot be chosen as the primary one. 
</descrip>

<p>As the Device protocol doesn't generate any routes, it cannot have
any attributes. Example configuration looks like this:

<p><code>
protocol device {
	scan time 10;		# Scan the interfaces often
	primary "eth0" 192.168.1.1;
	primary 192.168.0.0/16;
}
</code>

<sect>Direct

<p>The Direct protocol is a simple generator of device routes for all the
directly connected networks according to the list of interfaces provided
by the kernel via the Device protocol.

<p>The question is whether it is a good idea to have such device
routes in BIRD routing table. OS kernel usually handles device routes
for directly connected networks by itself so we don't need (and don't
want) to export these routes to the kernel protocol. OSPF protocol
creates device routes for its interfaces itself and BGP protocol is
usually used for exporting aggregate routes. Although there are some
use cases that use the direct protocol (like abusing eBGP as an IGP
routing protocol), in most cases it is not needed to have these device
routes in BIRD routing table and to use the direct protocol.

<p>The only configurable thing about direct is what interfaces it watches:

<p><descrip>
	<tag>interface <m/pattern [, ...]/</tag> By default, the Direct
	protocol will generate device routes for all the interfaces
	available. If you want to restrict it to some subset of interfaces
	(for example if you're using multiple routing tables for policy
	routing and some of the policy domains don't contain all interfaces),
	just use this clause.
</descrip>

<p>Direct device routes don't contain any specific attributes.

<p>Example config might look like this:

<p><code>
protocol direct {
	interface "-arc*", "*";		# Exclude the ARCnets
}
</code>

<sect>Kernel

<p>The Kernel protocol is not a real routing protocol. Instead of communicating
with other routers in the network, it performs synchronization of BIRD's routing
tables with the OS kernel. Basically, it sends all routing table updates to the kernel
and from time to time it scans the kernel tables to see whether some routes have
disappeared (for example due to unnoticed up/down transition of an interface)
or whether an `alien' route has been added by someone else (depending on the
<cf/learn/ switch, such routes are either ignored or accepted to our
table).

<p>Unfortunately, there is one thing that makes the routing table
synchronization a bit more complicated. In the kernel routing table
there are also device routes for directly connected networks. These
routes are usually managed by OS itself (as a part of IP address
configuration) and we don't want to touch that.  They are completely
ignored during the scan of the kernel tables and also the export of
device routes from BIRD tables to kernel routing tables is restricted
to prevent accidental interference. This restriction can be disabled using
<cf/device routes/ switch.

<p>If your OS supports only a single routing table, you can configure
only one instance of the Kernel protocol. If it supports multiple
tables (in order to allow policy routing; such an OS is for example
Linux), you can run as many instances as you want, but each of them
must be connected to a different BIRD routing table and to a different
kernel table.

<p>Because the kernel protocol is partially integrated with the
connected routing table, there are two limitations - it is not
possible to connect more kernel protocols to the same routing table
and changing route attributes (even the kernel ones) in an export
filter of a kernel protocol does not work. Both limitations can be
overcome using another routing table and the pipe protocol.

<sect1>Configuration

<p><descrip>
	<tag>persist <m/switch/</tag> Tell BIRD to leave all its routes in the
	routing tables when it exits (instead of cleaning them up).
	<tag>scan time <m/number/</tag> Time in seconds between two consecutive scans of the
	kernel routing table.
	<tag>learn <m/switch/</tag> Enable learning of routes added to the kernel
	routing tables by other routing daemons or by the system administrator.
	This is possible only on systems which support identification of route
	authorship.

	<tag>device routes <m/switch/</tag> Enable export of device
	routes to the kernel routing table. By default, such routes
	are rejected (with the exception of explicitly configured
	device routes from the static protocol) regardless of the
	export filter to protect device routes in kernel routing table
	(managed by OS itself) from accidental overwriting or erasing.

	<tag>kernel table <m/number/</tag> Select which kernel table should
	this particular instance of the Kernel protocol work with. Available
	only on systems supporting multiple routing tables.
</descrip>

<sect1>Attributes

<p>The Kernel protocol defines several attributes. These attributes
are translated to appropriate system (and OS-specific) route attributes.
We support these attributes:

<descrip>
	<tag>ip <cf/krt_prefsrc/</tag> (Linux) The preferred source address.
 	Used in source address selection for outgoing packets. Have to
 	be one of IP addresses of the router.

	<tag>int <cf/krt_realm/</tag> (Linux) The realm of the route. Can be
	used for traffic classification.
</descrip>

<sect1>Example

<p>A simple configuration can look this way:

<p><code>
protocol kernel {
	export all;
}
</code>

<p>Or for a system with two routing tables:

<p><code>
protocol kernel {		# Primary routing table
	learn;			# Learn alien routes from the kernel
	persist;		# Don't remove routes on bird shutdown
	scan time 10;		# Scan kernel routing table every 10 seconds
	import all;
	export all;
}

protocol kernel {		# Secondary routing table
	table auxtable;
	kernel table 100;
	export all;
}
</code>

<sect>OSPF

<sect1>Introduction

<p>Open Shortest Path First (OSPF) is a quite complex interior gateway
protocol. The current IPv4 version (OSPFv2) is defined in RFC
2328<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc2328.txt"> and
the current IPv6 version (OSPFv3) is defined in RFC 5340<htmlurl
url="ftp://ftp.rfc-editor.org/in-notes/rfc5340.txt">  It's a link state
(a.k.a. shortest path first) protocol -- each router maintains a
database describing the autonomous system's topology. Each participating
router has an identical copy of the database and all routers run the
same algorithm calculating a shortest path tree with themselves as a
root. OSPF chooses the least cost path as the best path.

<p>In OSPF, the autonomous system can be split to several areas in order
to reduce the amount of resources consumed for exchanging the routing
information and to protect the other areas from incorrect routing data.
Topology of the area is hidden to the rest of the autonomous system.

<p>Another very important feature of OSPF is that
it can keep routing information from other protocols (like Static or BGP)
in its link state database as external routes. Each external route can
be tagged by the advertising router, making it possible to pass additional
information between routers on the boundary of the autonomous system.

<p>OSPF quickly detects topological changes in the autonomous system (such
as router interface failures) and calculates new loop-free routes after a short
period of convergence. Only a minimal amount of 
routing traffic is involved.

<p>Each router participating in OSPF routing periodically sends Hello messages
to all its interfaces. This allows neighbors to be discovered dynamically.
Then the neighbors exchange theirs parts of the link state database and keep it
identical by flooding updates. The flooding process is reliable and ensures
that each router detects all changes.

<sect1>Configuration

<p>In the main part of configuration, there can be multiple definitions of
OSPF areas, each with a different id. These definitions includes many other
switches and multiple definitions of interfaces. Definition of interface
may contain many switches and constant definitions and list of neighbors
on nonbroadcast networks.

<code>
protocol ospf &lt;name&gt; {
	rfc1583compat &lt;switch&gt;;
	tick &lt;num&gt;;
	ecmp &lt;switch&gt; [limit &lt;num&gt;];
	area &lt;id&gt; {
		stub;
		nssa;
		summary &lt;switch&gt;;
		default nssa &lt;switch&gt;;
		default cost &lt;num&gt;;
		default cost2 &lt;num&gt;;
		translator &lt;switch&gt;;
		translator stability &lt;num&gt;;

                networks {
			&lt;prefix&gt;;
			&lt;prefix&gt; hidden;
		}
                external {
			&lt;prefix&gt;;
			&lt;prefix&gt; hidden;
			&lt;prefix&gt; tag &lt;num&gt;;
		}
		stubnet &lt;prefix&gt;;
		stubnet &lt;prefix&gt; {
			hidden &lt;switch&gt;;
			summary &lt;switch&gt;;
			cost &lt;num&gt;;
		}
		interface &lt;interface pattern&gt; {
			cost &lt;num&gt;;
			stub &lt;switch&gt;;
			hello &lt;num&gt;;
			poll &lt;num&gt;;
			retransmit &lt;num&gt;;
			priority &lt;num&gt;;
			wait &lt;num&gt;;
			dead count &lt;num&gt;;
			dead &lt;num&gt;;
			rx buffer [normal|large|&lt;num&gt;];
			type [broadcast|bcast|pointopoint|ptp|
				nonbroadcast|nbma|pointomultipoint|ptmp];
			strict nonbroadcast &lt;switch&gt;;
			check link &lt;switch&gt;;
			ecmp weight &lt;num&gt;;
			authentication [none|simple|cryptographic];
			password "&lt;text&gt;";
			password "&lt;text&gt;" {
				id &lt;num&gt;;
				generate from "&lt;date&gt;";
				generate to "&lt;date&gt;";
				accept from "&lt;date&gt;";
				accept to "&lt;date&gt;";
			};
			neighbors {
				&lt;ip&gt;;
				&lt;ip&gt; eligible;
			};
		};
		virtual link &lt;id&gt;	{
			hello &lt;num&gt;;
			retransmit &lt;num&gt;;
			wait &lt;num&gt;;
			dead count &lt;num&gt;;
			dead &lt;num&gt;;
			authentication [none|simple|cryptographic];
			password "&lt;text&gt;";
		};
	};
}
</code>

<descrip>
	<tag>rfc1583compat <M>switch</M></tag>
	 This option controls compatibility of routing table
	 calculation with RFC 1583<htmlurl
	 url="ftp://ftp.rfc-editor.org/in-notes/rfc1583.txt">. Default
	 value is no.

	<tag>tick <M>num</M></tag>
	 The routing table calculation and clean-up of areas' databases
         is not performed when a single link state
	 change arrives. To lower the CPU utilization, it's processed later
	 at periodical intervals of <m/num/ seconds. The default value is 1.

	<tag>ecmp <M>switch</M> [limit <M>number</M>]</tag>
	 This option specifies whether OSPF is allowed to generate
	 ECMP (equal-cost multipath) routes. Such routes are used when
	 there are several directions to the destination, each with
	 the same (computed) cost. This option also allows to specify
	 a limit on maximal number of nexthops in one route. By
	 default, ECMP is disabled.  If enabled, default value of the
	 limit is 16.

	<tag>area <M>id</M></tag>
	 This defines an OSPF area with given area ID (an integer or an IPv4
	 address, similarly to a router ID). The most important area is
	 the backbone (ID 0) to which every other area must be connected.

	<tag>stub</tag>
	 This option configures the area to be a stub area. External
	 routes are not flooded into stub areas. Also summary LSAs can be
	 limited in stub areas (see option <cf/summary/).
	 By default, the area is not a stub area.

	<tag>nssa</tag>
	 This option configures the area to be a NSSA (Not-So-Stubby
	 Area). NSSA is a variant of a stub area which allows a
	 limited way of external route propagation. Global external
	 routes are not propagated into a NSSA, but an external route
	 can be imported into NSSA as a (area-wide) NSSA-LSA (and
	 possibly translated and/or aggregated on area boundary).
	 By default, the area is not NSSA.

	<tag>summary <M>switch</M></tag>
	 This option controls propagation of summary LSAs into stub or
	 NSSA areas. If enabled, summary LSAs are propagated as usual,
	 otherwise just the default summary route (0.0.0.0/0) is
	 propagated (this is sometimes called totally stubby area). If
	 a stub area has more area boundary routers, propagating
	 summary LSAs could lead to more efficient routing at the cost
	 of larger link state database. Default value is no.

	<tag>default nssa <M>switch</M></tag>
 	 When <cf/summary/ option is enabled, default summary route is
	 no longer propagated to the NSSA. In that case, this option
	 allows to originate default route as NSSA-LSA to the NSSA.
	 Default value is no.

	<tag>default cost <M>num</M></tag>
	 This option controls the cost of a default route propagated to
	 stub and NSSA areas. Default value is 1000.

	<tag>default cost2 <M>num</M></tag>
	 When a default route is originated as NSSA-LSA, its cost
	 can use either type 1 or type 2 metric. This option allows
	 to specify the cost of a default route in type 2 metric.
	 By default, type 1 metric (option <cf/default cost/) is used.

	<tag>translator <M>switch</M></tag>
	 This option controls translation of NSSA-LSAs into external
	 LSAs. By default, one translator per NSSA is automatically
	 elected from area boundary routers. If enabled, this area
	 boundary router would unconditionally translate all NSSA-LSAs
	 regardless of translator election. Default value is no.

	<tag>translator stability <M>num</M></tag>
	 This option controls the translator stability interval (in
	 seconds). When the new translator is elected, the old one
	 keeps translating until the interval is over. Default value
	 is 40.

	<tag>networks { <m/set/ }</tag>
         Definition of area IP ranges. This is used in summary LSA origination.
	 Hidden networks are not propagated into other areas.

	<tag>external { <m/set/ }</tag>
         Definition of external area IP ranges for NSSAs. This is used
	 for NSSA-LSA translation. Hidden networks are not translated
	 into external LSAs. Networks can have configured route tag.

	<tag>stubnet <m/prefix/ { <m/options/ }</tag>
	 Stub networks are networks that are not transit networks
	 between OSPF routers. They are also propagated through an
	 OSPF area as a part of a link state database. By default,
	 BIRD generates a stub network record for each primary network
	 address on each OSPF interface that does not have any OSPF
	 neighbors, and also for each non-primary network address on
	 each OSPF interface. This option allows to alter a set of
	 stub networks propagated by this router. 

	 Each instance of this option adds a stub network with given
	 network prefix to the set of propagated stub network, unless
	 option <cf/hidden/ is used. It also suppresses default stub
	 networks for given network prefix. When option
	 <cf/summary/ is used, also default stub networks that are
	 subnetworks of given stub network are suppressed. This might
	 be used, for example, to aggregate generated stub networks.
	 
	<tag>interface <M>pattern</M></tag>
	 Defines that the specified interfaces belong to the area being defined.
	 See <ref id="dsc-iface" name="interface"> common option for detailed description.

	<tag>virtual link <M>id</M></tag>
	 Virtual link to router with the router id. Virtual link acts as a
         point-to-point interface belonging to backbone. The actual area is
         used as transport area. This item cannot be in the backbone.

	<tag>cost <M>num</M></tag>
	 Specifies output cost (metric) of an interface. Default value is 10.

	<tag>stub <M>switch</M></tag>
	 If set to interface it does not listen to any packet and does not send
	 any hello. Default value is no.

	<tag>hello <M>num</M></tag>
	 Specifies interval in seconds between sending of Hello messages. Beware, all
	 routers on the same network need to have the same hello interval.
	 Default value is 10.

	<tag>poll <M>num</M></tag>
	 Specifies interval in seconds between sending of Hello messages for
	 some neighbors on NBMA network. Default value is 20.

	<tag>retransmit <M>num</M></tag>
	 Specifies interval in seconds between retransmissions of unacknowledged updates.
	 Default value is 5.

        <tag>priority <M>num</M></tag>
	 On every multiple access network (e.g., the Ethernet) Designed Router
	 and Backup Designed router are elected. These routers have some
	 special functions in the flooding process. Higher priority increases
	 preferences in this election. Routers with priority 0 are not
	 eligible. Default value is 1.

	<tag>wait <M>num</M></tag>
	 After start, router waits for the specified number of seconds between starting
	 election and building adjacency. Default value is 40.
	 
	<tag>dead count <M>num</M></tag>
	 When the router does not receive any messages from a neighbor in
	 <m/dead count/*<m/hello/ seconds, it will consider the neighbor down.

	<tag>dead <M>num</M></tag>
	 When the router does not receive any messages from a neighbor in
	 <m/dead/ seconds, it will consider the neighbor down. If both directives
	 <m/dead count/ and <m/dead/ are used, <m/dead/ has precendence.

	<tag>rx buffer <M>num</M></tag>
	 This sets the size of buffer used for receiving packets. The buffer should
	 be bigger than maximal size of any packets. Value NORMAL (default)
	 means 2*MTU, value LARGE means maximal allowed packet - 65535.

	<tag>type broadcast|bcast</tag>
	 BIRD detects a type of a connected network automatically, but
	 sometimes it's convenient to force use of a different type
	 manually. On broadcast networks (like ethernet), flooding
	 and Hello messages are sent using multicasts (a single packet
	 for all the neighbors). A designated router is elected and it
	 is responsible for synchronizing the link-state databases and
	 originating network LSAs. This network type cannot be used on
	 physically NBMA networks and on unnumbered networks (networks
	 without proper IP prefix).

	<tag>type pointopoint|ptp</tag>
	 Point-to-point networks connect just 2 routers together. No
	 election is performed and no network LSA is originated, which
	 makes it simpler and faster to establish. This network type
	 is useful not only for physically PtP ifaces (like PPP or
	 tunnels), but also for broadcast networks used as PtP links.
	 This network type cannot be used on physically NBMA networks.

	<tag>type nonbroadcast|nbma</tag>
	 On NBMA networks, the packets are sent to each neighbor
	 separately because of lack of multicast capabilities.
	 Like on broadcast networks, a designated router is elected,
	 which plays a central role in propagation of LSAs.
	 This network type cannot be used on unnumbered networks.

	<tag>type pointomultipoint|ptmp</tag>
	 This is another network type designed to handle NBMA
	 networks. In this case the NBMA network is treated as a
	 collection of PtP links. This is useful if not every pair of
	 routers on the NBMA network has direct communication, or if
	 the NBMA network is used as an (possibly unnumbered) PtP
	 link.

	<tag>strict nonbroadcast <M>switch</M></tag>
	 If set, don't send hello to any undefined neighbor. This switch
	 is ignored on other than NBMA or PtMP networks. Default value is no.

	<tag>check link <M>switch</M></tag>
	 If set, a hardware link state (reported by OS) is taken into
	 consideration. When a link disappears (e.g. an ethernet cable is
	 unplugged), neighbors are immediately considered unreachable
	 and only the address of the iface (instead of whole network
	 prefix) is propagated. It is possible that some hardware
	 drivers or platforms do not implement this feature. Default value is no.

	<tag>ecmp weight <M>num</M></tag>
	 When ECMP (multipath) routes are allowed, this value specifies
	 a relative weight used for nexthops going through the iface.
	 Allowed values are 1-256. Default value is 1.

	<tag>authentication none</tag>
	 No passwords are sent in OSPF packets. This is the default value.

	<tag>authentication simple</tag>
	 Every packet carries 8 bytes of password. Received packets
	 lacking this password are ignored. This authentication mechanism is
	 very weak.

	<tag>authentication cryptographic</tag>
	 16-byte long MD5 digest is appended to every packet. For the digest
         generation 16-byte long passwords are used. Those passwords are 
         not sent via network, so this mechanism is quite secure.
         Packets can still be read by an attacker.

	<tag>password "<M>text</M>"</tag>
	 An 8-byte or 16-byte password used for authentication.
	 See <ref id="dsc-pass" name="password"> common option for detailed description.

	<tag>neighbors { <m/set/ } </tag>
	 A set of neighbors to which Hello messages on NBMA or PtMP
	 networks are to be sent. For NBMA networks, some of them
	 could be marked as eligible.

</descrip>

<sect1>Attributes

<p>OSPF defines four route attributes. Each internal route has a <cf/metric/.
Metric is ranging from 1 to infinity (65535).
External routes use <cf/metric type 1/ or <cf/metric type 2/.
A <cf/metric of type 1/ is comparable with internal <cf/metric/, a
<cf/metric of type 2/ is always longer
than any <cf/metric of type 1/ or any <cf/internal metric/.
<cf/Internal metric/ or <cf/metric of type 1/ is stored in attribute
<cf/ospf_metric1/, <cf/metric type 2/ is stored in attribute <cf/ospf_metric2/.
If you specify both metrics only metric1 is used.

Each external route can also carry attribute <cf/ospf_tag/ which is a
32-bit integer which is used when exporting routes to other protocols;
otherwise, it doesn't affect routing inside the OSPF domain at all.
The fourth attribute <cf/ospf_router_id/ is a router ID of the router
advertising that route/network. This attribute is read-only. Default
is <cf/ospf_metric2 = 10000/ and <cf/ospf_tag = 0/.

<sect1>Example

<p>

<code>
protocol ospf MyOSPF {
        rfc1583compat yes;
        tick 2;
	export filter {
		if source = RTS_BGP then {
			ospf_metric1 = 100;
			accept;
		}
		reject;
	};
	area 0.0.0.0 {
		interface "eth*" {
			cost 11;
			hello 15;
			priority 100;
			retransmit 7;
			authentication simple;
			password "aaa";
		};
		interface "ppp*" {
			cost 100;
			authentication cryptographic;
			password "abc" {
				id 1;
				generate to "22-04-2003 11:00:06";
				accept from "17-01-2001 12:01:05";
			};
			password "def" {
				id 2;
				generate to "22-07-2005 17:03:21";
				accept from "22-02-2001 11:34:06";
			};
		};
		interface "arc0" {
			cost 10;
			stub yes;
		};
		interface "arc1";
	};
	area 120 {
		stub yes;
		networks {
			172.16.1.0/24;
			172.16.2.0/24 hidden;
		}
		interface "-arc0" , "arc*" {
			type nonbroadcast;
			authentication none;
			strict nonbroadcast yes;
			wait 120;
			poll 40;
			dead count 8;
			neighbors {
				192.168.120.1 eligible;
				192.168.120.2;
				192.168.120.10;
			};
		};
	};
}
</code>

<sect>Pipe

<sect1>Introduction

<p>The Pipe protocol serves as a link between two routing tables, allowing routes to be
passed from a table declared as primary (i.e., the one the pipe is connected to using the
<cf/table/ configuration keyword) to the secondary one (declared using <cf/peer table/)
and vice versa, depending on what's allowed by the filters. Export filters control export
of routes from the primary table to the secondary one, import filters control the opposite
direction.

<p>The Pipe protocol may work in the opaque mode or in the transparent
mode. In the opaque mode, the Pipe protocol retransmits optimal route
from one table to the other table in a similar way like other
protocols send and receive routes. Retransmitted route will have the
source set to the Pipe protocol, which may limit access to protocol
specific route attributes. The opaque mode is a default mode.

<p>In transparent mode, the Pipe protocol retransmits all routes from
one table to the other table, retaining their original source and
attributes.  If import and export filters are set to accept, then both
tables would have the same content. The mode can be set by
<tt/mode/ option.

<p>The primary use of multiple routing tables and the Pipe protocol is for policy routing,
where handling of a single packet doesn't depend only on its destination address, but also
on its source address, source interface, protocol type and other similar parameters.
In many systems (Linux being a good example), the kernel allows to enforce routing policies
by defining routing rules which choose one of several routing tables to be used for a packet
according to its parameters. Setting of these rules is outside the scope of BIRD's work
(on Linux, you can use the <tt/ip/ command), but you can create several routing tables in BIRD,
connect them to the kernel ones, use filters to control which routes appear in which tables
and also you can employ the Pipe protocol for exporting a selected subset of one table to
another one.

<sect1>Configuration

<p><descrip>
	<tag>peer table <m/table/</tag> Defines secondary routing table to connect to. The
	primary one is selected by the <cf/table/ keyword.

	<tag>mode opaque|transparent</tag> Specifies the mode for the pipe to work in. Default is opaque.
</descrip>

<sect1>Attributes

<p>The Pipe protocol doesn't define any route attributes.

<sect1>Example

<p>Let's consider a router which serves as a boundary router of two different autonomous
systems, each of them connected to a subset of interfaces of the router, having its own
exterior connectivity and wishing to use the other AS as a backup connectivity in case
of outage of its own exterior line.

<p>Probably the simplest solution to this situation is to use two routing tables (we'll
call them <cf/as1/ and <cf/as2/) and set up kernel routing rules, so that packets having
arrived from interfaces belonging to the first AS will be routed according to <cf/as1/
and similarly for the second AS. Thus we have split our router to two logical routers,
each one acting on its own routing table, having its own routing protocols on its own
interfaces. In order to use the other AS's routes for backup purposes, we can pass
the routes between the tables through a Pipe protocol while decreasing their preferences
and correcting their BGP paths to reflect the AS boundary crossing.

<code>
table as1;				# Define the tables
table as2;

protocol kernel kern1 {			# Synchronize them with the kernel
	table as1;
	kernel table 1;
}

protocol kernel kern2 {
	table as2;
	kernel table 2;
}

protocol bgp bgp1 {			# The outside connections
	table as1;
	local as 1;
	neighbor 192.168.0.1 as 1001;
	export all;
	import all;
}

protocol bgp bgp2 {
	table as2;
	local as 2;
	neighbor 10.0.0.1 as 1002;
	export all;
	import all;
}

protocol pipe {				# The Pipe
	table as1;
	peer table as2;
	export filter {
		if net ~ [ 1.0.0.0/8+] then {	# Only AS1 networks
			if preference>10 then preference = preference-10;
			if source=RTS_BGP then bgp_path.prepend(1);
			accept;
		}
		reject;
	};
	import filter {
		if net ~ [ 2.0.0.0/8+] then {	# Only AS2 networks
			if preference>10 then preference = preference-10;
			if source=RTS_BGP then bgp_path.prepend(2);
			accept;
		}
		reject;
	};
}
</code>

<sect>RAdv

<sect1>Introduction

<p>The RAdv protocol is an implementation of Router Advertisements,
which are used in the IPv6 stateless autoconfiguration. IPv6 routers
send (in irregular time intervals or as an answer to a request)
advertisement packets to connected networks. These packets contain
basic information about a local network (e.g. a list of network
prefixes), which allows network hosts to autoconfigure network
addresses and choose a default route. BIRD implements router behavior
as defined in RFC 4861<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc4861.txt">.

<sect1>Configuration

<p>There are two classes of definitions in RAdv configuration --
interface definitions and prefix definitions:

<descrip>
	<tag>interface <m/pattern [, ...]/  { <m/options/ }</tag> 
	Interface definitions specify a set of interfaces on which the
	protocol is activated and contain interface specific options.
	See <ref id="dsc-iface" name="interface"> common options for
	detailed description.

	<tag>prefix <m/prefix/ { <m/options/ }</tag> 
	Prefix definitions allows to modify a list of advertised
	prefixes. By default, the advertised prefixes are the same as
	the network prefixes assigned to the interface. For each
	network prefix, the matching prefix definition is found and
	its options are used. If no matching prefix definition is
	found, the prefix is used with default options.

	Prefix definitions can be either global or interface-specific.
	The second ones are part of interface options. The prefix
	definition matching is done in the first-match style, when
	interface-specific definitions are processed before global
	definitions. As expected, the prefix definition is matching if
	the network prefix is a subnet of the prefix in prefix
	definition.
</descrip>

<p>Interface specific options:

<descrip>
	<tag>max ra interval <m/expr/</tag>
	Unsolicited router advertisements are sent in irregular time
	intervals. This option specifies the maximum length of these
	intervals, in seconds. Valid values are 4-1800. Default: 600

	<tag>min ra interval <m/expr/</tag>
	This option specifies the minimum length of that intervals, in
	seconds. Must be at least 3 and at most 3/4 * max ra interval.
	Default: about 1/3 * max ra interval.

	<tag>min delay <m/expr/</tag>
	The minimum delay between two consecutive router advertisements,
	in seconds. Default: 3

	<tag>managed <m/switch/</tag>
	This option specifies whether hosts should use DHCPv6 for
	IP address configuration. Default: no

	<tag>other config <m/switch/</tag>
	This option specifies whether hosts should use DHCPv6 to
	receive other configuration information. Default: no

	<tag>link mtu <m/expr/</tag>
	This option specifies which value of MTU should be used by
	hosts. 0 means unspecified. Default: 0

	<tag>reachable time <m/expr/</tag>
	This option specifies the time (in milliseconds) how long
	hosts should assume a neighbor is reachable (from the last
	confirmation). Maximum is 3600000, 0 means unspecified.
	Default 0.

	<tag>retrans timer <m/expr/</tag>
	This option specifies the time (in milliseconds) how long
	hosts should wait before retransmitting Neighbor Solicitation
	messages. 0 means unspecified. Default 0.

	<tag>current hop limit <m/expr/</tag>
	This option specifies which value of Hop Limit should be used
	by hosts. Valid values are 0-255, 0 means unspecified. Default: 64

	<tag>default lifetime <m/expr/</tag>
	This option specifies the time (in seconds) how long (after
	the receipt of RA) hosts may use the router as a default
	router. 0 means do not use as a default router. Default: 3 *
	max ra interval.
</descrip>


<p>Prefix specific options:

<descrip>
	<tag>onlink <m/switch/</tag>
	This option specifies whether hosts may use the advertised
	prefix for onlink determination. Default: yes

	<tag>autonomous <m/switch/</tag>
	This option specifies whether hosts may use the advertised
	prefix for stateless autoconfiguration. Default: yes

	<tag>valid lifetime <m/expr/</tag>
	This option specifies the time (in seconds) how long (after
	the receipt of RA) the prefix information is valid, i.e.,
	autoconfigured IP addresses can be assigned and hosts with
	that IP addresses are considered directly reachable. 0 means
	the prefix is no longer valid. Default: 86400 (1 day)

	<tag>preferred lifetime <m/expr/</tag>
	This option specifies the time (in seconds) how long (after
	the receipt of RA) IP addresses generated from the prefix
	using stateless autoconfiguration remain preferred. Default:
	14400 (4 hours)
</descrip>

<sect1>Example

<p><code>
protocol radv {
	interface "eth2" {
		max ra interval 5;	# Fast failover with more routers
		managed yes;		# Using DHCPv6 on eth2
		prefix ::/0 {
			autonomous off;	# So do not autoconfigure any IP
		};
	};

	interface "eth*";		# No need for any other options

	prefix 2001:0DB8:1234::/48 {
		preferred lifetime 0;	# Deprecated address range
	};

	prefix 2001:0DB8:2000::/48 {
		autonomous off;		# Do not autoconfigure
	};
}
</code>

<sect>RIP

<sect1>Introduction

<p>The RIP protocol (also sometimes called Rest In Pieces) is a simple protocol, where each router broadcasts (to all its neighbors)
distances to all networks it can reach. When a router hears distance to another network, it increments
it and broadcasts it back. Broadcasts are done in regular intervals. Therefore, if some network goes
unreachable, routers keep telling each other that its distance is the original distance plus 1 (actually, plus
interface metric, which is usually one). After some time, the distance reaches infinity (that's 15 in
RIP) and all routers know that network is unreachable. RIP tries to minimize situations where
counting to infinity is necessary, because it is slow. Due to infinity being 16, you can't use
RIP on networks where maximal distance is higher than 15 hosts. You can read more about RIP at <HTMLURL
URL="http://www.ietf.org/html.charters/rip-charter.html" name="http://www.ietf.org/html.charters/rip-charter.html">. Both IPv4  
(RFC 1723<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc1723.txt">)
and IPv6 (RFC 2080<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc2080.txt">) versions of RIP are supported by BIRD, historical RIPv1 (RFC 1058<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc1058.txt">)is
not currently supported. RIPv4 MD5 authentication (RFC 2082<htmlurl url="ftp://ftp.rfc-editor.org/in-notes/rfc2082.txt">) is supported.

<p>RIP is a very simple protocol, and it has a lot of shortcomings. Slow
convergence, big network load and inability to handle larger networks
makes it pretty much obsolete. (It is still usable on very small networks.)

<sect1>Configuration

<p>In addition to options common for all to other protocols, RIP supports the following ones:

<descrip>
	<tag/authentication none|plaintext|md5/ selects authentication method to be used. <cf/none/ means that
	  packets are not authenticated at all, <cf/plaintext/ means that a plaintext password is embedded
	  into each packet, and <cf/md5/ means that packets are authenticated using a MD5 cryptographic
	  hash. If you set authentication to not-none, it is a good idea to add <cf>password</cf>
	  section. Default: none.

	<tag>honor always|neighbor|never </tag>specifies when should requests for dumping routing table
	  be honored. (Always, when sent from a  host on a directly connected
	  network or never.) Routing table updates are honored only from
	  neighbors, that is not configurable. Default: never.
</descrip>

<p>There are two options that can be specified per-interface. First is <cf>metric</cf>, with
default one.  Second is <cf>mode multicast|broadcast|quiet|nolisten|version1</cf>, it selects mode for
rip to work in. If nothing is specified, rip runs in multicast mode. <cf>version1</cf> is
currently equivalent to <cf>broadcast</cf>, and it makes RIP talk to a broadcast address even
through multicast mode is possible. <cf>quiet</cf> option means that RIP will not transmit
any periodic messages to this interface and <cf>nolisten</cf> means that RIP will send to this
interface but not listen to it.

<p>The following options generally override behavior specified in RFC. If you use any of these
options, BIRD will no longer be RFC-compliant, which means it will not be able to talk to anything
other than equally configured BIRD. I have warned you.

<descrip>
	<tag>port <M>number</M></tag>
	  selects IP port to operate on, default 520. (This is useful when testing BIRD, if you
	  set this to an address &gt;1024, you will not need to run bird with UID==0).

	<tag>infinity <M>number</M></tag>
	  selects the value of infinity, default is 16. Bigger values will make protocol convergence
	  even slower.

	<tag>period <M>number</M>
	  </tag>specifies the number of seconds between periodic updates. Default is 30 seconds. A lower
	  number will mean faster convergence but bigger network
	  load. Do not use values lower than 10.

	<tag>timeout time <M>number</M>
	  </tag>specifies how old route has to be to be considered unreachable. Default is 4*<cf/period/.

	<tag>garbage time <M>number</M>
	  </tag>specifies how old route has to be to be discarded. Default is 10*<cf/period/.
</descrip>

<sect1>Attributes

<p>RIP defines two route attributes:

<descrip>
	<tag>int <cf/rip_metric/</tag> RIP metric of the route (ranging from 0 to <cf/infinity/).
	When routes from different RIP instances are available and all of them have the same
	preference, BIRD prefers the route with lowest <cf/rip_metric/.
	When importing a non-RIP route, the metric defaults to 5.

	<tag>int <cf/rip_tag/</tag> RIP route tag: a 16-bit number which can be used
	to carry additional information with the route (for example, an originating AS number
	in case of external routes). When importing a non-RIP route, the tag defaults to 0.
</descrip>

<sect1>Example

<p><code>
protocol rip MyRIP_test {
        debug all;
        port 1520;
        period 10;
        garbage time 60;
        interface "eth0" { metric 3; mode multicast; };
	interface "eth*" { metric 2; mode broadcast; };
        honor neighbor;
        authentication none;
        import filter { print "importing"; accept; };
        export filter { print "exporting"; accept; };
}
</code>

<sect>Static

<p>The Static protocol doesn't communicate with other routers in the network,
but instead it allows you to define routes manually. This is often used for
specifying how to forward packets to parts of the network which don't use
dynamic routing at all and also for defining sink routes (i.e., those
telling to return packets as undeliverable if they are in your IP block,
you don't have any specific destination for them and you don't want to send
them out through the default route to prevent routing loops).

<p>There are five types of static routes: `classical' routes telling
to forward packets to a neighboring router, multipath routes
specifying several (possibly weighted) neighboring routers, device
routes specifying forwarding to hosts on a directly connected network,
recursive routes computing their nexthops by doing route table lookups
for a given IP and special routes (sink, blackhole etc.) which specify
a special action to be done instead of forwarding the packet.

<p>When the particular destination is not available (the interface is down or
the next hop of the route is not a neighbor at the moment), Static just
uninstalls the route from the table it is connected to and adds it again as soon
as the destination becomes adjacent again.

<p>The Static protocol does not have many configuration options. The
definition of the protocol contains mainly a list of static routes:

<descrip>
	<tag>route <m/prefix/ via <m/ip/</tag> Static route through
	a neighboring router.
	<tag>route <m/prefix/ multipath via <m/ip/ [weight <m/num/] [via ...]</tag>
	Static multipath route. Contains several nexthops (gateways), possibly
 	with their weights.
	<tag>route <m/prefix/ via <m/"interface"/</tag> Static device
	route through an interface to hosts on a directly connected network.
	<tag>route <m/prefix/ recursive <m/ip/</tag> Static recursive route,
	its nexthop depends on a route table lookup for given IP address.
	<tag>route <m/prefix/ drop|reject|prohibit</tag> Special routes
	specifying to drop the packet, return it as unreachable or return
	it as administratively prohibited.

	<tag>check link <m/switch/</tag>
	If set, hardware link states of network interfaces are taken
	into consideration.  When link disappears (e.g. ethernet cable
	is unplugged), static routes directing to that interface are
	removed. It is possible that some hardware drivers or
	platforms do not implement this feature. Default: off.

	<tag>igp table <m/name/</tag> Specifies a table that is used
	for route table lookups of recursive routes. Default: the
	same table as the protocol is connected to.
</descrip>

<p>Static routes have no specific attributes.

<p>Example static config might look like this:

<p><code>
protocol static {
	table testable;			 # Connect to a non-default routing table
	route 0.0.0.0/0 via 198.51.100.130; # Default route
	route 10.0.0.0/8 multipath	 # Multipath route
		via 198.51.100.10 weight 2
		via 198.51.100.20
		via 192.0.2.1;
	route 203.0.113.0/24 reject;	 # Sink route
	route 10.2.0.0/24 via "arc0";	 # Secondary network
}
</code>

<chapt>Conclusions

<sect>Future work

<p>Although BIRD supports all the commonly used routing protocols,
there are still some features which would surely deserve to be
implemented in future versions of BIRD:

<itemize>
<item>Opaque LSA's
<item>Route aggregation and flap dampening
<item>Multipath routes
<item>Multicast routing protocols
<item>Ports to other systems
</itemize>

<sect>Getting more help

<p>If you use BIRD, you're welcome to join the bird-users mailing list
(<HTMLURL URL="mailto:bird-users@bird.network.cz" name="bird-users@bird.network.cz">)
where you can share your experiences with the other users and consult
your problems with the authors. To subscribe to the list, just send a
<tt/subscribe bird-users/ command in a body of a mail to
(<HTMLURL URL="mailto:majordomo@bird.network.cz" name="majordomo@bird.network.cz">).
The home page of BIRD can be found at <HTMLURL URL="http://bird.network.cz/" name="http://bird.network.cz/">.

<p>BIRD is a relatively young system and it probably contains some
bugs. You can report any problems to the bird-users list and the authors
will be glad to solve them, but before you do so,
please make sure you have read the available documentation and that you are running the latest version (available at <HTMLURL
URL="ftp://bird.network.cz/pub/bird" name="bird.network.cz:/pub/bird">). (Of course, a patch
which fixes the bug is always welcome as an attachment.)

<p>If you want to understand what is going inside, Internet standards are
a good and interesting reading. You can get them from <HTMLURL URL="ftp://ftp.rfc-editor.org/" name="ftp.rfc-editor.org"> (or a nicely sorted version from <HTMLURL URL="ftp://atrey.karlin.mff.cuni.cz/pub/rfc" name="atrey.karlin.mff.cuni.cz:/pub/rfc">).

<p><it/Good luck!/

</book>

<!--
LocalWords:  GPL IPv GateD BGPv RIPv OSPFv Linux sgml html dvi sgmltools Pavel
LocalWords:  linuxdoc dtd descrip config conf syslog stderr auth ospf bgp Mbps
LocalWords:  router's eval expr num birdc ctl UNIX if's enums bool int ip GCC
LocalWords:  len ipaddress pxlen netmask enum bgppath bgpmask clist gw md eth
LocalWords:  RTS printn quitbird iBGP AS'es eBGP RFC multiprotocol IGP Machek
LocalWords:  EGP misconfigurations keepalive pref aggr aggregator BIRD's RTC
LocalWords:  OS'es AS's multicast nolisten misconfigured UID blackhole MRTD MTU
LocalWords:  uninstalls ethernets IP binutils ANYCAST anycast dest RTD ICMP rfc
LocalWords:  compat multicasts nonbroadcast pointopoint loopback sym stats
LocalWords:  Perl SIGHUP dd mm yy HH MM SS EXT IA UNICAST multihop Discriminator txt
LocalWords:  proto wildcard Ondrej Filip
-->