summaryrefslogtreecommitdiffstats
path: root/Temparray.cpp
blob: d2379f2fbdd968bd3543f4ae2fdd493f34b0a4c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#include "Temparray.h"

Temparray::Temparray(float initialtemp, int x0, int y0, int z0){
  temparraynew = new float[x0*y0*z0*6*4];
  temparrayold = new float[x0*y0*z0*6*4];
  cubearray = new Cubehole[x0*y0*z0*6];

  sx = x0;
  sy = y0;
  sz = z0;

  tempInit(initialtemp, x0, y0, z0);

  //  static const float pos[5] = {-2.0, -1.0, 0.0, 1.0, 2.0};
  for(int i = 0; i < x0; ++i) {
    for(int j = 0; j < y0; ++j) {
      for(int k = 0; k < z0; ++k) {
        for(int l = 0; l < 6; ++l) {
          cubehole(i, j, k, l).setSize((6-l)/6.0*0.9, 0.9, (6-l)/6.0*0.9, (5-l)/6.0*0.9, (5-l)/6.0*0.9);

          float x, y, z;
          if(x0 % 2 == 0)      x = -(x0/2)+i+0.5;
          else if(x0 % 2 == 1) x = -(x0-1)/2+i;
          if(y0 % 2 == 0)      y = -(y0/2)+j+0.5;
          else if(y0 % 2 == 1) y = -(y0-1)/2+j;
          if(z0 % 2 == 0)      z = -(z0/2)+k+0.5;
          else if(z0 % 2 == 1) z = -(z0-1)/2+k;
          cubehole(i, j, k, l).setPos(x, y, z);

          cubehole(i, j, k, l).setColor(vmml::vec4f(1.0, 0.5, 1.0, 1.0),
                                        vmml::vec4f(0.5, 0.5, 1.0, 1.0),
                                        vmml::vec4f(1.0, 0.5, 0.0, 1.0),
                                        vmml::vec4f(0.0, 0.5, 0.0, 1.0));
        }
      }
    }
  }
/*  cubehole(2, 2, 2, 1).setColor(vmml::vec4f(0.0, 0.0, 0.0, 1.0),
                                vmml::vec4f(0.0, 0.0, 0.0, 1.0),
                                vmml::vec4f(0.0, 0.0, 0.0, 1.0),
                                vmml::vec4f(0.0, 0.0, 0.0, 1.0));
  cubehole(2, 2, 2, 2).setColor(vmml::vec4f(1.0, 1.0, 1.0, 1.0),
                                vmml::vec4f(1.0, 1.0, 1.0, 1.0),
                                vmml::vec4f(1.0, 1.0, 1.0, 1.0),
                                vmml::vec4f(1.0, 1.0, 1.0, 1.0));
  cubehole(2, 2, 2, 3).setColor(vmml::vec4f(0.5, 0.5, 0.5, 1.0),
                                vmml::vec4f(0.5, 0.5, 0.5, 1.0),
                                vmml::vec4f(0.5, 0.5, 0.5, 1.0),
                                vmml::vec4f(0.5, 0.5, 0.5, 1.0));*/
}

void Temparray::calcTemp(){
  float conductivity = 0.7, specificcapacity = 1513;
  float areasmall, area, areabig, distance, capacity, capacity2, volume, thermalresistance, tau12, tau21;
  float meterperunit = 3.0;
  float width, height, depth, innerwidth, innerdepth;
  float width2, height2, depth2, innerwidth2, innerdepth2;
  float loadableenergy, unloadableenergy;
  
  for(int i = 0; i < sx; ++i) {
    for(int j = 0; j < sy; ++j) {
      for(int k = 0; k < sz; ++k) {
        for(int l = 1; l < 6; ++l) {
          for(int m = 0; m < 4; ++m) {
            width = cubehole(i, j, k, l).getWidth();
            width2 = cubehole(i, j, k, l-1).getWidth();
            height = cubehole(i, j, k, l).getHeight();
            height2 = cubehole(i, j, k, l-1).getHeight();
            depth = cubehole(i, j, k, l).getDepth();
            depth2 = cubehole(i, j, k, l-1).getDepth();
            innerwidth = cubehole(i, j, k, l).getInnerWidth();
            innerwidth2 = cubehole(i, j, k, l-1).getInnerWidth();
            innerdepth = cubehole(i, j, k, l).getInnerDepth();
            innerdepth2 = cubehole(i, j, k, l-1).getInnerDepth();
            
            if(m % 2 == 0) {
              area = (((width + innerwidth)/2)*height) / 0.9 * meterperunit;
              areabig = (((width2 + innerwidth2)/2)*height2) / 0.9 * meterperunit;

              thermalresistance = ((depth2 / 2 - (depth2 - innerdepth2)/4) -
                                   (depth / 2 - (depth - innerdepth)/4)) / 0.9 * meterperunit /
                                   (conductivity * ((area + areabig) / 2));

              capacity = specificcapacity *((((depth - innerdepth)/2)*((width + innerwidth)/2)*
                                                    height)/0.9*meterperunit);
              capacity2 = specificcapacity *((((depth2 - innerdepth2)/2)*((width2 + innerwidth2)/2)*
                                                    height2)/0.9*meterperunit);
            }
            else if(m % 2 == 1) {
              area = (((depth + innerdepth)/2)*height) / 0.9 * meterperunit;
              areabig = (((depth2 + innerdepth2)/2)*height2) / 0.9 * meterperunit;

              thermalresistance = ((width2 / 2 - (width2 - innerwidth2)/4) -
                                   (width / 2 - (width - innerwidth)/4)) / 0.9 * meterperunit /
                                   (conductivity * ((area + areabig) / 2));

              capacity = specificcapacity *((((depth + innerdepth)/2)*((width - innerwidth)/2)*
                                                    height)/0.9*meterperunit);
              capacity2 = specificcapacity *((((depth2 + innerdepth2)/2)*((width2 - innerwidth2)/2)*
                                                    height2)/0.9*meterperunit);
            }
            tau12 = capacity * thermalresistance;
            tau21 = capacity2 * thermalresistance;
            
            temperaturenew(i, j, k, l, m) =
              temperaturenew(i, j, k, l, m) - ((temperatureold(i, j, k, l, m) -
                temperatureold(i, j, k, l-1, m))*(1-exp(-(1/tau12))));
            temperaturenew(i, j, k, l-1, m) =
              temperaturenew(i, j, k, l-1, m) + ((temperatureold(i, j, k, l, m) -
                temperatureold(i, j, k, l-1, m))*(1-exp(-(1/tau21))));
          }
        }
      }
    }
  }
  for(int i = 0; i < sx; ++i) {
    for(int j = 0; j < sy; ++j) {
      for(int k = 0; k < sz; ++k) {
        for(int l = 0; l < 6; ++l) {
          for(int m = 0; m < 4; m++) {
            width = cubehole(i, j, k, l).getWidth();
            height = cubehole(i, j, k, l).getHeight();
            depth = cubehole(i, j, k, l).getDepth();
            innerwidth = cubehole(i, j, k, l).getInnerWidth();
            innerdepth = cubehole(i, j, k, l).getInnerDepth();
            
            if(m % 2 == 0)area = (((depth - innerdepth)/2)*((width + innerwidth)/2))
                                  / 0.9 * meterperunit;
            if(m % 2 == 1)area = (((width - innerwidth)/2)*((depth + innerdepth)/2))
                                  / 0.9 * meterperunit;

            if(m % 2 == 0)thermalresistance = ((depth - innerdepth)/2)
                                              /0.9 * meterperunit /(conductivity * area);
            if(m % 2 == 1)thermalresistance = ((width - innerwidth)/2)
                                              /0.9 * meterperunit /(conductivity * area);
    
            if(m % 2 == 0)capacity = specificcapacity *((((depth - innerdepth)/2)*
                                  ((width + innerwidth)/2)*height)
                                  / 0.9 * meterperunit);
            if(m % 2 == 1)capacity = specificcapacity *((((width - innerwidth)/2)*
                                  ((depth + innerdepth)/2)*height)
                                  / 0.9 * meterperunit);
                                  
            loadableenergy = (probetemp - temperatureold(i, j, k, l, m))/thermalresistance/10;
            unloadableenergy = (temperatureold(i, j, k, l, m)-21.5)/thermalresistance/10;
            
            tau12 = capacity * thermalresistance;
              
            temperaturenew(i, j, k, l, m) =
              temperaturenew(i, j, k, l, m) - ((temperatureold(i, j, k, l, m) - probetemp)
                *(1-exp(-(1/tau12))));
            
            if(j > 0) {
              width2 = cubehole(i, j-1, k, l).getWidth();
              height2 = cubehole(i, j-1, k, l).getHeight();
              depth2 = cubehole(i, j-1, k, l).getDepth();
              innerwidth2 = cubehole(i, j-1, k, l).getInnerWidth();
              innerdepth2 = cubehole(i, j-1, k, l).getInnerDepth();
              
              if(m % 2 == 0) {
                area = (((width + innerwidth)/2) * ((depth-innerdepth)/2)) / 0.9 * meterperunit;
                areabig = (((width2 + innerwidth2)/2) * ((depth2-innerdepth2)/2)) / 0.9 * meterperunit;
  
                thermalresistance = (height/2+height2/2) / 0.9 * meterperunit /
                                     (conductivity * ((area + areabig) / 2));
  
                capacity = specificcapacity *((((depth - innerdepth)/2)*((width + innerwidth)/2)*
                                                      height)/0.9*meterperunit);
                capacity2 = specificcapacity *((((depth2 - innerdepth2)/2)*((width2 + innerwidth2)/2)*
                                                      height2)/0.9*meterperunit);
              }
              else if(m % 2 == 1) {
                area = (((depth + innerdepth)/2) * ((width-innerwidth)/2)) / 0.9 * meterperunit;
                areabig = (((depth2 + innerdepth2)/2) * ((width2-innerwidth2)/2)) / 0.9 * meterperunit;
  
                thermalresistance = (height/2+height2/2) / 0.9 * meterperunit /
                                     (conductivity * ((area + areabig) / 2));
  
                capacity = specificcapacity *((((depth + innerdepth)/2)*((width - innerwidth)/2)*
                                                      height)/0.9*meterperunit);
                capacity2 = specificcapacity *((((depth2 + innerdepth2)/2)*((width2 - innerwidth2)/2)*
                                                      height2)/0.9*meterperunit);
              }
              tau12 = capacity * thermalresistance;
              tau21 = capacity2 * thermalresistance;
              
              temperaturenew(i, j, k, l, m) =
                temperaturenew(i, j, k, l, m) - ((temperatureold(i, j, k, l, m) -
                  temperatureold(i, j-1, k, l, m))*(1-exp(-(1/tau12))));
              temperaturenew(i, j-1, k, l, m) =
                temperaturenew(i, j-1, k, l, m) + ((temperatureold(i, j, k, l, m) -
                  temperatureold(i, j-1, k, l, m))*(1-exp(-(1/tau21))));
            }
            
            if(m == 0) {
              area = (sqrt(pow((depth-innerdepth)/2, 2) + pow((width-innerwidth)/2, 2))* height) /
                        0.9 * meterperunit;

              thermalresistance = sqrt(pow((width/2 - (width-innerwidth)/4)/2, 2)+
                                       pow((depth/2 - (depth-innerdepth)/4)/2, 2))/
                                       0.9 * meterperunit /(conductivity * area);

              capacity = specificcapacity *((((depth - innerdepth)/2)*((width + innerwidth)/2)*
                                              height)/0.9*meterperunit);
              capacity2 = specificcapacity *((((width - innerwidth)/2)*((depth + innerdepth)/2)*
                                                height)/0.9*meterperunit);
              
              tau12 = capacity * thermalresistance;
              tau21 = capacity2 * thermalresistance;
              
              temperaturenew(i, j, k, l, m) =
                temperaturenew(i, j, k, l, m) - ((temperatureold(i, j, k, l, m) -
                  temperatureold(i, j, k, l, 1))*(1-exp(-(1/tau12))));
              temperaturenew(i, j, k, l, 1) =
                temperaturenew(i, j, k, l, 1) + ((temperatureold(i, j, k, l, m) -
                  temperatureold(i, j, k, l, 1))*(1-exp(-(1/tau21))));
            }
            else if(m == 1) {
              area = (sqrt(pow((width-innerwidth)/2, 2) + pow((depth-innerdepth)/2, 2))* height) /
                        0.9 * meterperunit;

              thermalresistance = sqrt(pow((depth/2 - (depth-innerdepth)/4)/2, 2)+
                                       pow((width/2 - (width-innerwidth)/4)/2, 2))/
                                       0.9 * meterperunit /(conductivity * area);

              capacity = specificcapacity *((((width - innerwidth)/2)*((depth + innerdepth)/2)*
                                              height)/0.9*meterperunit);
              capacity2 = specificcapacity *((((depth - innerdepth)/2)*((width + innerwidth)/2)*
                                                height)/0.9*meterperunit);
                                                
              tau12 = capacity * thermalresistance;
              tau21 = capacity2 * thermalresistance;
              
              temperaturenew(i, j, k, l, 1) =
                temperaturenew(i, j, k, l, 1) - ((temperatureold(i, j, k, l, 1) -
                  temperatureold(i, j, k, l, 2))*(1-exp(-(1/tau12))));
              temperaturenew(i, j, k, l, 2) =
                temperaturenew(i, j, k, l, 2) + ((temperatureold(i, j, k, l, 1) -
                  temperatureold(i, j, k, l, 2))*(1-exp(-(1/tau21))));
            }
            else if(m == 2) {
              area = (sqrt(pow((depth-innerdepth)/2, 2) + pow((width-innerwidth)/2, 2))* height) /
                        0.9 * meterperunit;

              thermalresistance = sqrt(pow((width/2 - (width-innerwidth)/4)/2, 2)+
                                       pow((depth/2 - (depth-innerdepth)/4)/2, 2))/
                                       0.9 * meterperunit /(conductivity * area);

              capacity = specificcapacity *((((depth - innerdepth)/2)*((width + innerwidth)/2)*
                                              height)/0.9*meterperunit);
              capacity2 = specificcapacity *((((width - innerwidth)/2)*((depth + innerdepth)/2)*
                                                height)/0.9*meterperunit);
                                                
              tau12 = capacity * thermalresistance;
              tau21 = capacity2 * thermalresistance;
              
              temperaturenew(i, j, k, l, 2) =
                temperaturenew(i, j, k, l, 2) - ((temperatureold(i, j, k, l, 2) -
                  temperatureold(i, j, k, l, 3))*(1-exp(-(1/tau12))));
              temperaturenew(i, j, k, l, 3) =
                temperaturenew(i, j, k, l, 3) + ((temperatureold(i, j, k, l, 2) -
                  temperatureold(i, j, k, l, 3))*(1-exp(-(1/tau21))));
            }
            else if(m == 3) {
              area = (sqrt(pow((width-innerwidth)/2, 2) + pow((depth-innerdepth)/2, 2))* height) /
                        0.9 * meterperunit;

              thermalresistance = sqrt(pow((depth/2 - (depth-innerdepth)/4)/2, 2)+
                                       pow((width/2 - (width-innerwidth)/4)/2, 2))/
                                       0.9 * meterperunit /(conductivity * area);

              capacity = specificcapacity *((((width - innerwidth)/2)*((depth + innerdepth)/2)*
                                              height)/0.9*meterperunit);
              capacity2 = specificcapacity *((((depth - innerdepth)/2)*((width + innerwidth)/2)*
                                                height)/0.9*meterperunit);
                                                
              tau12 = capacity * thermalresistance;
              tau21 = capacity2 * thermalresistance;
              
              temperaturenew(i, j, k, l, 3) =
                temperaturenew(i, j, k, l, 3) - ((temperatureold(i, j, k, l, 3) -
                  temperatureold(i, j, k, l, 0))*(1-exp(-(1/tau12))));
              temperaturenew(i, j, k, l, 0) =
                temperaturenew(i, j, k, l, 0) + ((temperatureold(i, j, k, l, 3) -
                  temperatureold(i, j, k, l, 0))*(1-exp(-(1/tau21))));
            }
            if(j == sy-1) {
              if(m % 2 == 0)area = (((depth - innerdepth)/2)*((width + innerwidth)/2))
                                    / 0.9 * meterperunit;
              if(m % 2 == 1)area = (((width - innerwidth)/2)*((depth + innerdepth)/2))
                                    / 0.9 * meterperunit;

              thermalresistance = (3 + height/2) / 0.9 * meterperunit /(conductivity * area);
    
              if(m % 2 == 0)capacity = specificcapacity *((((depth - innerdepth)/2)*
                                    ((width + innerwidth)/2)*height)
                                    / 0.9 * meterperunit);
              if(m % 2 == 1)capacity = specificcapacity *((((width - innerwidth)/2)*
                                    ((depth + innerdepth)/2)*height)
                                    / 0.9 * meterperunit);
                                    
              tau12 = capacity * thermalresistance;
              
              temperaturenew(i, j, k, 0, m) =
                temperaturenew(i, j, k, 0, m) - ((temperatureold(i, j, k, 0, m) - earthtemp)
                  *(1-exp(-(1/tau12))));
            }
          }
        }
        if(i > 0) {
          width = cubehole(i, j, k, 0).getWidth();
          height = cubehole(i, j, k, 0).getHeight();
          depth = cubehole(i, j, k, 0).getDepth();
          innerwidth = cubehole(i, j, k, 0).getInnerWidth();
          innerdepth = cubehole(i, j, k, 0).getInnerDepth();

          area = (((depth + innerdepth)/2)*height) / 0.9 * meterperunit;

          thermalresistance = ((width - innerwidth)/2) / 0.9 * meterperunit /
                               (conductivity * area);

          capacity = specificcapacity *((((depth + innerdepth)/2)*((width - innerwidth)/2)*
                                              height)/0.9*meterperunit);
          tau12 = capacity * thermalresistance;
          
          temperaturenew(i, j, k, 0, 3) =
            temperaturenew(i, j, k, 0, 3) - ((temperatureold(i, j, k, 0, 3) -
              temperatureold(i-1, j, k, 0, 1))*(1-exp(-(1/tau12))));
          temperaturenew(i-1, j, k, 0, 1) =
            temperaturenew(i-1, j, k, 0, 1) + ((temperatureold(i, j, k, 0, 3) -
              temperatureold(i-1, j, k, 0, 1))*(1-exp(-(1/tau12))));       
        }
        if (i == 0 || i == sx-1) {
          int h=3;
          if(i == sx-1) h=1;
          
          width = cubehole(i, j, k, 0).getWidth();
          height = cubehole(i, j, k, 0).getHeight();
          depth = cubehole(i, j, k, 0).getDepth();
          innerwidth = cubehole(i, j, k, 0).getInnerWidth();
          innerdepth = cubehole(i, j, k, 0).getInnerDepth();
          
          area = (((depth + innerdepth)/2)*height) / 0.9 * meterperunit;

          thermalresistance = (3 + (width - innerwidth)/4) / 0.9 * meterperunit /
                               (conductivity * area);

          capacity = specificcapacity *((((depth + innerdepth)/2)*((width - innerwidth)/2)*
                                              height)/0.9*meterperunit);
          tau12 = capacity * thermalresistance;
          
          temperaturenew(i, j, k, 0, h) =
            temperaturenew(i, j, k, 0, h) - ((temperatureold(i, j, k, 0, h) - earthtemp)
              *(1-exp(-(1/tau12))));
        }
        if(k > 0) {
          width = cubehole(i, j, k, 0).getWidth();
          height = cubehole(i, j, k, 0).getHeight();
          depth = cubehole(i, j, k, 0).getDepth();
          innerwidth = cubehole(i, j, k, 0).getInnerWidth();
          innerdepth = cubehole(i, j, k, 0).getInnerDepth();

          area = (((width + innerwidth)/2)*height) / 0.9 * meterperunit;

          thermalresistance = ((depth - innerdepth)/2) / 0.9 * meterperunit /
                               (conductivity * area);

          capacity = specificcapacity *((((depth - innerdepth)/2)*((width + innerwidth)/2)*
                                              height)/0.9*meterperunit);
          tau12 = capacity * thermalresistance;
  
          temperaturenew(i, j, k, 0, 0) =
            temperaturenew(i, j, k, 0, 0) - ((temperatureold(i, j, k, 0, 0) -
              temperatureold(i-1, j, k-1, 0, 2))*(1-exp(-(1/tau12))));
          temperaturenew(i, j, k-1, 0, 2) =
            temperaturenew(i, j, k-1, 0, 2) + ((temperatureold(i, j, k, 0, 0) -
              temperatureold(i, j, k-1, 0, 2))*(1-exp(-(1/tau12))));       
        }
        if(k == 0 || k == sz-1) {
          int h=0;
          if(i == sz-1) h=2;
          
          width = cubehole(i, j, k, 0).getWidth();
          height = cubehole(i, j, k, 0).getHeight();
          depth = cubehole(i, j, k, 0).getDepth();
          innerwidth = cubehole(i, j, k, 0).getInnerWidth();
          innerdepth = cubehole(i, j, k, 0).getInnerDepth();
          
          area = (((width + innerwidth)/2)*height) / 0.9 * meterperunit;

          thermalresistance = (3 + (depth - innerdepth)/4) / 0.9 * meterperunit /
                               (conductivity * area);

          capacity = specificcapacity *((((width + innerwidth)/2)*((depth - innerdepth)/2)*
                                              height)/0.9*meterperunit);
          tau12 = capacity * thermalresistance;
          
          temperaturenew(i, j, k, 0, h) =
            temperaturenew(i, j, k, 0, h) - ((temperatureold(i, j, k, 0, h) - earthtemp)
              *(1-exp(-(1/tau12))));
        }
      }
    }
  }
  mergetemperature();
  coloring();
//  std::cerr << temperaturenew(2, 2, 2, 1, 2) << std::endl;
//  std::cerr << temperaturenew(2, 2, 2, 2, 2) << std::endl;
//  std::cerr << temperaturenew(2, 2, 2, 3, 2) << "\n" << std::endl;
//  std::cerr << "        " << temperatureold(2, 2, 2, 1, 2) << std::endl;
//  std::cerr << temperatureold(2, 2, 2, 2, 1) << " " << temperatureold(2, 2, 2, 2, 2) << " " << temperatureold(2, 2, 2, 2, 3) << std::endl;
//  std::cerr << "        " << temperatureold(2, 2, 2, 3, 2) << "\n" << std::endl;
}

std::list<Triangle> Temparray::getTriangles(){
  std::list<Triangle> triangles;

  for(int i = 0; i < sx; ++i) {
    for(int j = 0; j < sy; ++j) {
      for(int k = 0; k < sz; ++k) {
        for(int l = 0; l < 6; ++l) {
          std::list<Triangle> t = cubehole(i, j, k, l).getTriangles();
          triangles.splice(triangles.end(), t);
        }
      }
    }
  }
  return triangles;
}

void Temparray::coloring() {
  float r[4], g[4], b[4];
  for(int i=0; i<sx; ++i){
    for(int j=0; j<sy; ++j){
      for(int k=0; k<sz; ++k){
        for(int l=0; l<6; ++l){
          for(int m=0; m<4; ++m){
            if(temperatureold(i, j, k, l, m) >= 25 ) b[m]=0;
            else b[m]=(25-temperatureold(i, j, k, l, m))/25;
            g[m]=fabs((25-temperatureold(i, j, k, l, m))/25);
            if(temperatureold(i, j, k, l, m) <= 25 ) r[m]=0;
            else r[m]=(100-temperatureold(i, j, k, l, m))/25;
          }
          cubehole(i, j, k, l).setColor(vmml::vec4f(r[0], g[0], b[0], 1.0),
                                        vmml::vec4f(r[1], g[1], b[1], 1.0),
                                        vmml::vec4f(r[2], g[2], b[2], 1.0),
                                        vmml::vec4f(r[3], g[3], b[3], 1.0));
        }
      }
    }
  }
}