diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/ec25519.c | 54 | ||||
-rw-r--r-- | src/ec25519_gf.c | 50 |
2 files changed, 8 insertions, 96 deletions
diff --git a/src/ec25519.c b/src/ec25519.c index 736b798..a9d519c 100644 --- a/src/ec25519.c +++ b/src/ec25519.c @@ -35,16 +35,15 @@ * * See http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html for add and * double operations. + * + * Doxygen comments for public APIs can be found in the public header file. */ #include <libuecc/ecc.h> -/** The identity element */ const ecc_25519_work_t ecc_25519_work_identity = {{0}, {1}, {1}, {0}}; - -/** The ec25519 default base */ const ecc_25519_work_t ecc_25519_work_default_base = { {0xd4, 0x6b, 0xfe, 0x7f, 0x39, 0xfa, 0x8c, 0x22, 0xe1, 0x96, 0x23, 0xeb, 0x26, 0xb7, 0x8e, 0x6a, @@ -401,7 +400,6 @@ static void recip(unsigned int out[32], const unsigned int z[32]) { /* 2^255 - 21 */ mult(out, t1, z11); } -/** Loads a point with given coordinates into its unpacked representation */ int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) { int i; unsigned int X2[32], Y2[32], aX2[32], dX2[32], dX2Y2[32], aX2_Y2[32], _1_dX2Y2[32], r[32]; @@ -431,13 +429,6 @@ int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_in return 1; } -/** - * Stores a point's x and y coordinates - * - * \param x Returns the x coordinate of the point. May be NULL. - * \param y Returns the y coordinate of the point. May be NULL. - * \param in The unpacked point to store. - */ void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) { unsigned int X[32], Y[32], Z[32]; int i; @@ -459,7 +450,6 @@ void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t } } -/** Loads a packed point into its unpacked representation */ int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in) { int i; unsigned int X2[32] /* X^2 */, aX2[32] /* aX^2 */, dX2[32] /* dX^2 */, _1_aX2[32] /* 1-aX^2 */, _1_dX2[32] /* 1-aX^2 */; @@ -492,7 +482,6 @@ int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in) { return 1; } -/** Stores a point into its packed representation */ void ecc_25519_store_packed(ecc_int256_t *out, const ecc_25519_work_t *in) { ecc_int256_t y; @@ -500,7 +489,6 @@ void ecc_25519_store_packed(ecc_int256_t *out, const ecc_25519_work_t *in) { out->p[31] |= (y.p[0] << 7); } -/** Checks if a point is the identity element of the Elliptic Curve group */ int ecc_25519_is_identity(const ecc_25519_work_t *in) { unsigned int Y_Z[32]; @@ -510,13 +498,6 @@ int ecc_25519_is_identity(const ecc_25519_work_t *in) { return (check_zero(in->X)&check_zero(Y_Z)); } -/** - * Doubles a point of the Elliptic Curve - * - * ecc_25519_double(out, in) is equivalent to ecc_25519_add(out, in, in), but faster. - * - * The same pointers may be used for input and output. - */ void ecc_25519_double(ecc_25519_work_t *out, const ecc_25519_work_t *in) { unsigned int A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32], t2[32], t3[32]; @@ -538,11 +519,6 @@ void ecc_25519_double(ecc_25519_work_t *out, const ecc_25519_work_t *in) { mult(out->Z, F, G); } -/** - * Adds two points of the Elliptic Curve - * - * The same pointers may be used for input and output. - */ void ecc_25519_add(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2) { unsigned int A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32], t2[32], t3[32], t4[32], t5[32]; @@ -566,15 +542,6 @@ void ecc_25519_add(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc mult(out->Z, F, G); } -/** - * Does a scalar multiplication of a point of the Elliptic Curve with an integer of a given bit length - * - * To speed up scalar multiplication when it is known that not the whole 256 bits of the scalar - * are used. The bit length should always be a constant and not computed at runtime to ensure - * that no timing attacks are possible. - * - * The same pointers may be used for input and output. - **/ void ecc_25519_scalarmult_bits(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base, unsigned bits) { ecc_25519_work_t Q2, Q2p; ecc_25519_work_t cur = ecc_25519_work_identity; @@ -595,31 +562,14 @@ void ecc_25519_scalarmult_bits(ecc_25519_work_t *out, const ecc_int256_t *n, con *out = cur; } -/** - * Does a scalar multiplication of a point of the Elliptic Curve with an integer - * - * The same pointers may be used for input and output. - **/ void ecc_25519_scalarmult(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base) { ecc_25519_scalarmult_bits(out, n, base, 256); } -/** - * Does a scalar multiplication of the default base point (generator element) of the Elliptic Curve with an integer of a given bit length - * - * The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$. - * - * See the notes about \ref ecc_25519_scalarmult_bits before using this function. - */ void ecc_25519_scalarmult_base_bits(ecc_25519_work_t *out, const ecc_int256_t *n, unsigned bits) { ecc_25519_scalarmult_bits(out, n, &ecc_25519_work_default_base, bits); } -/** - * Does a scalar multiplication of the default base point (generator element) of the Elliptic Curve with an integer - * - * The order of the base point is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$. - */ void ecc_25519_scalarmult_base(ecc_25519_work_t *out, const ecc_int256_t *n) { ecc_25519_scalarmult(out, n, &ecc_25519_work_default_base); } diff --git a/src/ec25519_gf.c b/src/ec25519_gf.c index 4914fa7..4059c31 100644 --- a/src/ec25519_gf.c +++ b/src/ec25519_gf.c @@ -25,10 +25,12 @@ */ /** \file - Simple finite field operations on the prime field \f$ F_q \f$ for - \f$ q = 2^{252} + 27742317777372353535851937790883648493 \f$, which - is the order of the base point used for ec25519 -*/ + * Simple finite field operations on the prime field \f$ F_q \f$ for + * \f$ q = 2^{252} + 27742317777372353535851937790883648493 \f$, which + * is the order of the base point used for ec25519 + * + * Doxygen comments for public APIs can be found in the public header file. + */ #include <libuecc/ecc.h> @@ -40,11 +42,6 @@ #define ASR(n,s) (((n) >> s)|(IS_NEGATIVE(n)*((unsigned)-1) << (8*sizeof(n)-s))) -/** - * The order of the prime field - * - * The order is \f$ 2^{252} + 27742317777372353535851937790883648493 \f$. - */ const ecc_int256_t ecc_25519_gf_order = {{ 0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, @@ -70,7 +67,6 @@ static void select(unsigned char out[32], const unsigned char r[32], const unsig } } -/** Checks if an integer is equal to zero (after reduction) */ int ecc_25519_gf_is_zero(const ecc_int256_t *in) { int i; ecc_int256_t r; @@ -84,11 +80,6 @@ int ecc_25519_gf_is_zero(const ecc_int256_t *in) { return (((bits-1)>>8) & 1); } -/** - * Adds two integers as Galois field elements - * - * The same pointers may be used for input and output. - */ void ecc_25519_gf_add(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2) { unsigned int j; unsigned int u; @@ -103,11 +94,6 @@ void ecc_25519_gf_add(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int2 } } -/** - * Subtracts two integers as Galois field elements - * - * The same pointers may be used for input and output. - */ void ecc_25519_gf_sub(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2) { unsigned int j; unsigned int u; @@ -145,11 +131,6 @@ static void reduce(unsigned char a[32]) { select(a, out1, out2, IS_NEGATIVE(u1)); } -/** - * Reduces an integer to a unique representation in the range \f$ [0,q-1] \f$ - * - * The same pointers may be used for input and output. - */ void ecc_25519_gf_reduce(ecc_int256_t *out, const ecc_int256_t *in) { int i; @@ -183,11 +164,6 @@ static void montgomery(unsigned char out[32], const unsigned char a[32], const u } } -/** - * Multiplies two integers as Galois field elements - * - * The same pointers may be used for input and output. - */ void ecc_25519_gf_mult(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int256_t *in2) { /* 2^512 mod q */ static const unsigned char C[32] = { @@ -210,11 +186,6 @@ void ecc_25519_gf_mult(ecc_int256_t *out, const ecc_int256_t *in1, const ecc_int montgomery(out->p, R, C); } -/** - * Computes the reciprocal of a Galois field element - * - * The same pointers may be used for input and output. - */ void ecc_25519_gf_recip(ecc_int256_t *out, const ecc_int256_t *in) { static const unsigned char C[32] = { 0x01 @@ -268,15 +239,6 @@ void ecc_25519_gf_recip(ecc_int256_t *out, const ecc_int256_t *in) { montgomery(out->p, R2, C); } -/** - * Ensures some properties of a Galois field element to make it fit for use as a secret key - * - * This sets the 255th bit and clears the 256th and the bottom three bits (so the key - * will be a multiple of 8). See Daniel J. Bernsteins paper "Curve25519: new Diffie-Hellman speed records." - * for the rationale of this. - * - * The same pointers may be used for input and output. - */ void ecc_25519_gf_sanitize_secret(ecc_int256_t *out, const ecc_int256_t *in) { int i; |