1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
|
/*
Copyright (c) 2012-2015, Matthias Schiffer <mschiffer@universe-factory.net>
Partly based on public domain code by Matthew Dempsky and D. J. Bernstein.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* EC group operations for Twisted Edwards Curve \f$ ax^2 + y^2 = 1 + dx^2y^2 \f$
* on prime field \f$ p = 2^{255} - 19 \f$.
*
* Two different (isomorphic) sets of curve parameters are supported:
*
* \f$ a = 486664 \f$ and
* \f$ d = 486660 \f$
* are the parameters used by the original libuecc implementation (till v5).
* To use points on this curve, use the functions with the suffix \em legacy.
*
* The other supported curve uses the parameters
* \f$ a = -1 \f$ and
* \f$ d = -(121665/121666) \f$,
* which is the curve used by the Ed25519 algorithm. The functions for this curve
* have the suffix \em ed25519.
*
* Internally, libuecc always uses the latter representation for its \em work structure.
*
* The curves are equivalent to the Montgomery Curve used in D. J. Bernstein's
* Curve25519 Diffie-Hellman algorithm.
*
* See http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html for add and
* double operations.
*
* Doxygen comments for public APIs can be found in the public header file.
*
* Invariant that must be held by all public API: the components of an
* \ref ecc_25519_work_t are always in the range \f$ [0, 2p) \f$.
* Integers in this range will be called \em squeezed in the following.
*/
#include <libuecc/ecc.h>
const ecc_25519_work_t ecc_25519_work_identity = {{0}, {1}, {1}, {0}};
const ecc_25519_work_t ecc_25519_work_base_legacy = {
{0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21},
{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66},
{1},
{0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67},
};
const ecc_25519_work_t ecc_25519_work_default_base = {
{0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21},
{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66},
{1},
{0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67},
};
const ecc_25519_work_t ecc_25519_work_base_ed25519 = {
{0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21},
{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66},
{1},
{0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67},
};
static const uint32_t zero[32] = {0};
static const uint32_t one[32] = {1};
static const uint32_t minus1[32] = {
0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f,
};
/** Ed25519 parameter -(121665/121666) */
static const uint32_t d[32] = {
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52,
};
/** Factor to multiply the X coordinate with to convert from the legacy to the Ed25519 curve */
static const uint32_t legacy_to_ed25519[32] = {
0xe7, 0x81, 0xba, 0x00, 0x55, 0xfb, 0x91, 0x33,
0x7d, 0xe5, 0x82, 0xb4, 0x2e, 0x2c, 0x5e, 0x3a,
0x81, 0xb0, 0x03, 0xfc, 0x23, 0xf7, 0x84, 0x2d,
0x44, 0xf9, 0x5f, 0x9f, 0x0b, 0x12, 0xd9, 0x70,
};
/** Factor to multiply the X coordinate with to convert from the Ed25519 to the legacy curve */
static const uint32_t ed25519_to_legacy[32] = {
0xe9, 0x68, 0x42, 0xdb, 0xaf, 0x04, 0xb4, 0x40,
0xa1, 0xd5, 0x43, 0xf2, 0xf9, 0x38, 0x31, 0x28,
0x01, 0x17, 0x05, 0x67, 0x9b, 0x81, 0x61, 0xf8,
0xa9, 0x5b, 0x3e, 0x6a, 0x20, 0x67, 0x4b, 0x24,
};
/** Adds two unpacked integers (modulo p) */
static void add(uint32_t out[32], const uint32_t a[32], const uint32_t b[32]) {
unsigned int j;
uint32_t u;
u = 0;
for (j = 0; j < 31; j++) {
u += a[j] + b[j];
out[j] = u & 255;
u >>= 8;
}
u += a[31] + b[31];
out[31] = u;
}
/**
* Subtracts two unpacked integers (modulo p)
*
* b must be \em squeezed.
*/
static void sub(uint32_t out[32], const uint32_t a[32], const uint32_t b[32]) {
unsigned int j;
uint32_t u;
u = 218;
for (j = 0;j < 31;++j) {
u += a[j] + UINT32_C(65280) - b[j];
out[j] = u & 255;
u >>= 8;
}
u += a[31] - b[31];
out[31] = u;
}
/**
* Performs carry and reduce on an unpacked integer
*
* The result is not always fully reduced, but it will be significantly smaller than \f$ 2p \f$.
*/
static void squeeze(uint32_t a[32]) {
unsigned int j;
uint32_t u;
u = 0;
for (j = 0;j < 31;++j) {
u += a[j];
a[j] = u & 255;
u >>= 8;
}
u += a[31];
a[31] = u & 127;
u = 19 * (u >> 7);
for (j = 0;j < 31;++j) {
u += a[j];
a[j] = u & 255;
u >>= 8;
}
u += a[31];
a[31] = u;
}
static const uint32_t minusp[32] = {
19, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 128
};
/**
* Ensures that the output of a previous \ref squeeze is fully reduced
*
* After a \ref freeze, only the lower byte of each integer part holds a meaningful value.
*/
static void freeze(uint32_t a[32]) {
uint32_t aorig[32];
unsigned int j;
uint32_t negative;
for (j = 0; j < 32; j++)
aorig[j] = a[j];
add(a, a, minusp);
negative = -((a[31] >> 7) & 1);
for (j = 0; j < 32; j++)
a[j] ^= negative & (aorig[j] ^ a[j]);
}
/**
* Returns the parity (lowest bit of the fully reduced value) of a
*
* The input must be \em squeezed.
*/
static int parity(const uint32_t a[32]) {
uint32_t b[32];
add(b, a, minusp);
return (a[0] ^ (b[31] >> 7) ^ 1) & 1;
}
/**
* Multiplies two unpacked integers (modulo p)
*
* The result will be \em squeezed.
*/
static void mult(uint32_t out[32], const uint32_t a[32], const uint32_t b[32]) {
unsigned int i, j;
uint32_t u;
for (i = 0; i < 32; ++i) {
u = 0;
for (j = 0; j <= i; j++)
u += a[j] * b[i - j];
for (j = i + 1; j < 32; j++)
u += 38 * a[j] * b[i + 32 - j];
out[i] = u;
}
squeeze(out);
}
/**
* Multiplies an unpacked integer with a small integer (modulo p)
*
* The result will be \em squeezed.
*/
static void mult_int(uint32_t out[32], uint32_t n, const uint32_t a[32]) {
unsigned int j;
uint32_t u;
u = 0;
for (j = 0; j < 31; j++) {
u += n * a[j];
out[j] = u & 255;
u >>= 8;
}
u += n * a[31]; out[31] = u & 127;
u = 19 * (u >> 7);
for (j = 0; j < 31; j++) {
u += out[j];
out[j] = u & 255;
u >>= 8;
}
u += out[j];
out[j] = u;
}
/**
* Squares an unpacked integer
*
* The result will be sqeezed.
*/
static void square(uint32_t out[32], const uint32_t a[32]) {
unsigned int i, j;
uint32_t u;
for (i = 0; i < 32; i++) {
u = 0;
for (j = 0; j < i - j; j++)
u += a[j] * a[i - j];
for (j = i + 1; j < i + 32 - j; j++)
u += 38 * a[j] * a[i + 32 - j];
u *= 2;
if ((i & 1) == 0) {
u += a[i / 2] * a[i / 2];
u += 38 * a[i / 2 + 16] * a[i / 2 + 16];
}
out[i] = u;
}
squeeze(out);
}
/** Checks for the equality of two unpacked integers */
static int check_equal(const uint32_t x[32], const uint32_t y[32]) {
uint32_t differentbits = 0;
int i;
for (i = 0; i < 32; i++) {
differentbits |= ((x[i] ^ y[i]) & 0xffff);
differentbits |= ((x[i] ^ y[i]) >> 16);
}
return (1 & ((differentbits - 1) >> 16));
}
/**
* Checks if an unpacked integer equals zero (modulo p)
*
* The integer must be squeezed before.
*/
static int check_zero(const uint32_t x[32]) {
static const uint32_t p[32] = {
0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f
};
return (check_equal(x, zero) | check_equal(x, p));
}
/** Copies r to out when b == 0, s when b == 1 */
static void selectw(ecc_25519_work_t *out, const ecc_25519_work_t *r, const ecc_25519_work_t *s, uint32_t b) {
unsigned int j;
uint32_t t;
uint32_t bminus1;
bminus1 = b - 1;
for (j = 0; j < 32; ++j) {
t = bminus1 & (r->X[j] ^ s->X[j]);
out->X[j] = s->X[j] ^ t;
t = bminus1 & (r->Y[j] ^ s->Y[j]);
out->Y[j] = s->Y[j] ^ t;
t = bminus1 & (r->Z[j] ^ s->Z[j]);
out->Z[j] = s->Z[j] ^ t;
t = bminus1 & (r->T[j] ^ s->T[j]);
out->T[j] = s->T[j] ^ t;
}
}
/** Copies r to out when b == 0, s when b == 1 */
static void select(uint32_t out[32], const uint32_t r[32], const uint32_t s[32], uint32_t b) {
unsigned int j;
uint32_t t;
uint32_t bminus1;
bminus1 = b - 1;
for (j = 0;j < 32;++j) {
t = bminus1 & (r[j] ^ s[j]);
out[j] = s[j] ^ t;
}
}
/**
* Computes the square root of an unpacked integer (in the prime field modulo p)
*
* If the given integer has no square root, 0 is returned, 1 otherwise.
*/
static int square_root(uint32_t out[32], const uint32_t z[32]) {
static const uint32_t rho_s[32] = {
0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b
};
/* raise z to power (2^252-2), check if power (2^253-5) equals -1 */
uint32_t z2[32];
uint32_t z9[32];
uint32_t z11[32];
uint32_t z2_5_0[32];
uint32_t z2_10_0[32];
uint32_t z2_20_0[32];
uint32_t z2_50_0[32];
uint32_t z2_100_0[32];
uint32_t t0[32];
uint32_t t1[32];
uint32_t z2_252_1[32];
uint32_t z2_252_1_rho_s[32];
int i;
/* 2 */ square(z2, z);
/* 4 */ square(t1, z2);
/* 8 */ square(t0, t1);
/* 9 */ mult(z9, t0, z);
/* 11 */ mult(z11, z9, z2);
/* 22 */ square(t0, z11);
/* 2^5 - 2^0 = 31 */ mult(z2_5_0, t0, z9);
/* 2^6 - 2^1 */ square(t0, z2_5_0);
/* 2^7 - 2^2 */ square(t1, t0);
/* 2^8 - 2^3 */ square(t0, t1);
/* 2^9 - 2^4 */ square(t1, t0);
/* 2^10 - 2^5 */ square(t0, t1);
/* 2^10 - 2^0 */ mult(z2_10_0, t0, z2_5_0);
/* 2^11 - 2^1 */ square(t0, z2_10_0);
/* 2^12 - 2^2 */ square(t1, t0);
/* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^20 - 2^0 */ mult(z2_20_0, t1, z2_10_0);
/* 2^21 - 2^1 */ square(t0, z2_20_0);
/* 2^22 - 2^2 */ square(t1, t0);
/* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^40 - 2^0 */ mult(t0, t1, z2_20_0);
/* 2^41 - 2^1 */ square(t1, t0);
/* 2^42 - 2^2 */ square(t0, t1);
/* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t1, t0); square(t0, t1); }
/* 2^50 - 2^0 */ mult(z2_50_0, t0, z2_10_0);
/* 2^51 - 2^1 */ square(t0, z2_50_0);
/* 2^52 - 2^2 */ square(t1, t0);
/* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^100 - 2^0 */ mult(z2_100_0, t1, z2_50_0);
/* 2^101 - 2^1 */ square(t1, z2_100_0);
/* 2^102 - 2^2 */ square(t0, t1);
/* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { square(t1, t0); square(t0, t1); }
/* 2^200 - 2^0 */ mult(t1, t0, z2_100_0);
/* 2^201 - 2^1 */ square(t0, t1);
/* 2^202 - 2^2 */ square(t1, t0);
/* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^250 - 2^0 */ mult(t0, t1, z2_50_0);
/* 2^251 - 2^1 */ square(t1, t0);
/* 2^252 - 2^2 */ square(t0, t1);
/* 2^252 - 2^1 */ mult(z2_252_1, t0, z2);
/* 2^253 - 2^3 */ square(t1, t0);
/* 2^253 - 6 */ mult(t0, t1, z2);
/* 2^253 - 5 */ mult(t1, t0, z);
mult(z2_252_1_rho_s, z2_252_1, rho_s);
select(out, z2_252_1, z2_252_1_rho_s, check_equal(t1, minus1));
/* Check the root */
square(t0, out);
return check_equal(t0, z);
}
/** Computes the reciprocal of an unpacked integer (in the prime field modulo p) */
static void recip(uint32_t out[32], const uint32_t z[32]) {
uint32_t z2[32];
uint32_t z9[32];
uint32_t z11[32];
uint32_t z2_5_0[32];
uint32_t z2_10_0[32];
uint32_t z2_20_0[32];
uint32_t z2_50_0[32];
uint32_t z2_100_0[32];
uint32_t t0[32];
uint32_t t1[32];
int i;
/* 2 */ square(z2, z);
/* 4 */ square(t1, z2);
/* 8 */ square(t0, t1);
/* 9 */ mult(z9, t0, z);
/* 11 */ mult(z11, z9, z2);
/* 22 */ square(t0, z11);
/* 2^5 - 2^0 = 31 */ mult(z2_5_0, t0, z9);
/* 2^6 - 2^1 */ square(t0, z2_5_0);
/* 2^7 - 2^2 */ square(t1, t0);
/* 2^8 - 2^3 */ square(t0, t1);
/* 2^9 - 2^4 */ square(t1, t0);
/* 2^10 - 2^5 */ square(t0, t1);
/* 2^10 - 2^0 */ mult(z2_10_0, t0, z2_5_0);
/* 2^11 - 2^1 */ square(t0, z2_10_0);
/* 2^12 - 2^2 */ square(t1, t0);
/* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^20 - 2^0 */ mult(z2_20_0, t1, z2_10_0);
/* 2^21 - 2^1 */ square(t0, z2_20_0);
/* 2^22 - 2^2 */ square(t1, t0);
/* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^40 - 2^0 */ mult(t0, t1, z2_20_0);
/* 2^41 - 2^1 */ square(t1, t0);
/* 2^42 - 2^2 */ square(t0, t1);
/* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { square(t1, t0); square(t0, t1); }
/* 2^50 - 2^0 */ mult(z2_50_0, t0, z2_10_0);
/* 2^51 - 2^1 */ square(t0, z2_50_0);
/* 2^52 - 2^2 */ square(t1, t0);
/* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^100 - 2^0 */ mult(z2_100_0, t1, z2_50_0);
/* 2^101 - 2^1 */ square(t1, z2_100_0);
/* 2^102 - 2^2 */ square(t0, t1);
/* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { square(t1, t0); square(t0, t1); }
/* 2^200 - 2^0 */ mult(t1, t0, z2_100_0);
/* 2^201 - 2^1 */ square(t0, t1);
/* 2^202 - 2^2 */ square(t1, t0);
/* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { square(t0, t1); square(t1, t0); }
/* 2^250 - 2^0 */ mult(t0, t1, z2_50_0);
/* 2^251 - 2^1 */ square(t1, t0);
/* 2^252 - 2^2 */ square(t0, t1);
/* 2^253 - 2^3 */ square(t1, t0);
/* 2^254 - 2^4 */ square(t0, t1);
/* 2^255 - 2^5 */ square(t1, t0);
/* 2^255 - 21 */ mult(out, t1, z11);
}
/**
* Checks if the X and Y coordinates of a work structure represent a valid point of the curve
*
* Also fills in the T coordinate.
*/
static int check_load_xy(ecc_25519_work_t *val) {
uint32_t X2[32], Y2[32], dX2[32], dX2Y2[32], Y2_X2[32], Y2_X2_1[32], r[32];
/* Check validity */
square(X2, val->X);
square(Y2, val->Y);
mult(dX2, d, X2);
mult(dX2Y2, dX2, Y2);
sub(Y2_X2, Y2, X2);
sub(Y2_X2_1, Y2_X2, one);
sub(r, Y2_X2_1, dX2Y2);
squeeze(r);
if (!check_zero(r))
return 0;
mult(val->T, val->X, val->Y);
return 1;
}
int ecc_25519_load_xy_ed25519(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) {
int i;
for (i = 0; i < 32; i++) {
out->X[i] = x->p[i];
out->Y[i] = y->p[i];
out->Z[i] = (i == 0);
}
return check_load_xy(out);
}
int ecc_25519_load_xy_legacy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) {
int i;
uint32_t tmp[32];
for (i = 0; i < 32; i++) {
tmp[i] = x->p[i];
out->Y[i] = y->p[i];
out->Z[i] = (i == 0);
}
mult(out->X, tmp, legacy_to_ed25519);
return check_load_xy(out);
}
int ecc_25519_load_xy(ecc_25519_work_t *out, const ecc_int256_t *x, const ecc_int256_t *y) {
return ecc_25519_load_xy_legacy(out, x, y);
}
void ecc_25519_store_xy_ed25519(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) {
uint32_t X[32], Y[32], Z[32];
int i;
recip(Z, in->Z);
if (x) {
mult(X, Z, in->X);
freeze(X);
for (i = 0; i < 32; i++)
x->p[i] = X[i];
}
if (y) {
mult(Y, Z, in->Y);
freeze(Y);
for (i = 0; i < 32; i++)
y->p[i] = Y[i];
}
}
void ecc_25519_store_xy_legacy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) {
uint32_t X[32], tmp[32], Y[32], Z[32];
int i;
recip(Z, in->Z);
if (x) {
mult(tmp, Z, in->X);
mult(X, tmp, ed25519_to_legacy);
freeze(X);
for (i = 0; i < 32; i++)
x->p[i] = X[i];
}
if (y) {
mult(Y, Z, in->Y);
freeze(Y);
for (i = 0; i < 32; i++)
y->p[i] = Y[i];
}
}
void ecc_25519_store_xy(ecc_int256_t *x, ecc_int256_t *y, const ecc_25519_work_t *in) {
ecc_25519_store_xy_legacy(x, y, in);
}
int ecc_25519_load_packed_ed25519(ecc_25519_work_t *out, const ecc_int256_t *in) {
int i;
uint32_t Y2[32] /* Y^2 */, dY2[32] /* dY^2 */, Y2_1[32] /* Y^2-1 */, dY2_1[32] /* dY^2+1 */, _1_dY2_1[32] /* 1/(dY^2+1) */;
uint32_t X2[32] /* X^2 */, X[32], Xt[32];
for (i = 0; i < 32; i++) {
out->Y[i] = in->p[i];
out->Z[i] = (i == 0);
}
out->Y[31] &= 0x7f;
square(Y2, out->Y);
mult(dY2, d, Y2);
sub(Y2_1, Y2, one);
add(dY2_1, dY2, one);
recip(_1_dY2_1, dY2_1);
mult(X2, Y2_1, _1_dY2_1);
if (!square_root(X, X2))
return 0;
/* No squeeze is necessary after subtractions from zero if the subtrahend is squeezed */
sub(Xt, zero, X);
select(out->X, X, Xt, (in->p[31] >> 7) ^ parity(X));
mult(out->T, out->X, out->Y);
return 1;
}
int ecc_25519_load_packed_legacy(ecc_25519_work_t *out, const ecc_int256_t *in) {
int i;
uint32_t X2[32] /* X^2 */, aX2[32] /* aX^2 */, dX2[32] /* dX^2 */, _1_aX2[32] /* 1-aX^2 */, _1_dX2[32] /* 1-aX^2 */;
uint32_t _1_1_dX2[32] /* 1/(1-aX^2) */, Y2[32] /* Y^2 */, Y[32], Yt[32], X_legacy[32];
for (i = 0; i < 32; i++) {
X_legacy[i] = in->p[i];
out->Z[i] = (i == 0);
}
X_legacy[31] &= 0x7f;
square(X2, X_legacy);
mult_int(aX2, UINT32_C(486664), X2);
mult_int(dX2, UINT32_C(486660), X2);
sub(_1_aX2, one, aX2);
sub(_1_dX2, one, dX2);
recip(_1_1_dX2, _1_dX2);
mult(Y2, _1_aX2, _1_1_dX2);
if (!square_root(Y, Y2))
return 0;
/* No squeeze is necessary after subtractions from zero if the subtrahend is squeezed */
sub(Yt, zero, Y);
select(out->Y, Y, Yt, (in->p[31] >> 7) ^ parity(Y));
mult(out->X, X_legacy, legacy_to_ed25519);
mult(out->T, out->X, out->Y);
return 1;
}
int ecc_25519_load_packed(ecc_25519_work_t *out, const ecc_int256_t *in) {
return ecc_25519_load_packed_legacy(out, in);
}
void ecc_25519_store_packed_ed25519(ecc_int256_t *out, const ecc_25519_work_t *in) {
ecc_int256_t x;
ecc_25519_store_xy_ed25519(&x, out, in);
out->p[31] |= (x.p[0] << 7);
}
void ecc_25519_store_packed_legacy(ecc_int256_t *out, const ecc_25519_work_t *in) {
ecc_int256_t y;
ecc_25519_store_xy_legacy(out, &y, in);
out->p[31] |= (y.p[0] << 7);
}
void ecc_25519_store_packed(ecc_int256_t *out, const ecc_25519_work_t *in) {
ecc_25519_store_packed_legacy(out, in);
}
int ecc_25519_is_identity(const ecc_25519_work_t *in) {
uint32_t Y_Z[32];
sub(Y_Z, in->Y, in->Z);
squeeze(Y_Z);
return (check_zero(in->X)&check_zero(Y_Z));
}
void ecc_25519_negate(ecc_25519_work_t *out, const ecc_25519_work_t *in) {
int i;
for (i = 0; i < 32; i++) {
out->Y[i] = in->Y[i];
out->Z[i] = in->Z[i];
}
/* No squeeze is necessary after subtractions from zero if the subtrahend is squeezed */
sub(out->X, zero, in->X);
sub(out->T, zero, in->T);
}
void ecc_25519_double(ecc_25519_work_t *out, const ecc_25519_work_t *in) {
uint32_t A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32];
square(A, in->X);
square(B, in->Y);
square(t0, in->Z);
mult_int(C, 2, t0);
sub(D, zero, A);
add(t0, in->X, in->Y);
square(t1, t0);
sub(t0, t1, A);
sub(E, t0, B);
add(G, D, B);
sub(F, G, C);
sub(H, D, B);
mult(out->X, E, F);
mult(out->Y, G, H);
mult(out->T, E, H);
mult(out->Z, F, G);
}
void ecc_25519_add(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2) {
const uint32_t j = UINT32_C(60833);
const uint32_t k = UINT32_C(121665);
uint32_t A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32];
sub(t0, in1->Y, in1->X);
mult_int(t1, j, t0);
sub(t0, in2->Y, in2->X);
mult(A, t0, t1);
add(t0, in1->Y, in1->X);
mult_int(t1, j, t0);
add(t0, in2->Y, in2->X);
mult(B, t0, t1);
mult_int(t0, k, in2->T);
mult(C, in1->T, t0);
mult_int(t0, 2*j, in2->Z);
mult(D, in1->Z, t0);
sub(E, B, A);
add(F, D, C);
sub(G, D, C);
add(H, B, A);
mult(out->X, E, F);
mult(out->Y, G, H);
mult(out->T, E, H);
mult(out->Z, F, G);
}
/** Adds two points of the Elliptic Curve, assuming that in2->Z == 1 */
static void ecc_25519_add1(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2) {
const uint32_t j = UINT32_C(60833);
const uint32_t k = UINT32_C(121665);
uint32_t A[32], B[32], C[32], D[32], E[32], F[32], G[32], H[32], t0[32], t1[32];
sub(t0, in1->Y, in1->X);
mult_int(t1, j, t0);
sub(t0, in2->Y, in2->X);
mult(A, t0, t1);
add(t0, in1->Y, in1->X);
mult_int(t1, j, t0);
add(t0, in2->Y, in2->X);
mult(B, t0, t1);
mult_int(t0, k, in2->T);
mult(C, in1->T, t0);
mult_int(D, 2*j, in1->Z);
sub(E, B, A);
add(F, D, C);
sub(G, D, C);
add(H, B, A);
mult(out->X, E, F);
mult(out->Y, G, H);
mult(out->T, E, H);
mult(out->Z, F, G);
}
void ecc_25519_sub(ecc_25519_work_t *out, const ecc_25519_work_t *in1, const ecc_25519_work_t *in2) {
ecc_25519_work_t in2_neg;
ecc_25519_negate(&in2_neg, in2);
ecc_25519_add(out, in1, &in2_neg);
}
void ecc_25519_scalarmult_bits(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base, unsigned bits) {
ecc_25519_work_t Q2, Q2p;
ecc_25519_work_t cur = ecc_25519_work_identity;
int b, pos;
if (bits > 256)
bits = 256;
for (pos = bits - 1; pos >= 0; --pos) {
b = n->p[pos / 8] >> (pos & 7);
b &= 1;
ecc_25519_double(&Q2, &cur);
ecc_25519_add(&Q2p, &Q2, base);
selectw(&cur, &Q2, &Q2p, b);
}
*out = cur;
}
void ecc_25519_scalarmult(ecc_25519_work_t *out, const ecc_int256_t *n, const ecc_25519_work_t *base) {
ecc_25519_scalarmult_bits(out, n, base, 256);
}
void ecc_25519_scalarmult_base_bits(ecc_25519_work_t *out, const ecc_int256_t *n, unsigned bits) {
ecc_25519_work_t Q2, Q2p;
ecc_25519_work_t cur = ecc_25519_work_identity;
int b, pos;
if (bits > 256)
bits = 256;
for (pos = bits - 1; pos >= 0; --pos) {
b = n->p[pos / 8] >> (pos & 7);
b &= 1;
ecc_25519_double(&Q2, &cur);
ecc_25519_add1(&Q2p, &Q2, &ecc_25519_work_default_base);
selectw(&cur, &Q2, &Q2p, b);
}
*out = cur;
}
void ecc_25519_scalarmult_base(ecc_25519_work_t *out, const ecc_int256_t *n) {
ecc_25519_scalarmult_base_bits(out, n, 256);
}
|