1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
|
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# LANGUAGE FlexibleInstances #-}
-- \^^ deriving Typeable
-- --------------------------------------------------------------------------
-- |
-- Module : Operations.hs
-- Copyright : (c) Spencer Janssen 2007
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : dons@cse.unsw.edu.au
-- Stability : unstable
-- Portability : not portable, Typeable deriving, mtl, posix
--
-- Operations.
--
-----------------------------------------------------------------------------
module Operations where
import XMonad
import qualified StackSet as W
import {-# SOURCE #-} Config (borderWidth,logHook,numlockMask,defaultLayouts,otherPossibleLayouts)
import Data.Maybe
import Data.List (nub, (\\), find, partition)
import Data.Bits ((.|.), (.&.), complement)
import Data.Ratio
import qualified Data.Map as M
import qualified Data.Set as S
import Control.Monad.State
import Control.Monad.Reader
import Control.Arrow ((***), second)
import System.IO
import Graphics.X11.Xlib
import Graphics.X11.Xinerama (getScreenInfo)
import Graphics.X11.Xlib.Extras
-- ---------------------------------------------------------------------
-- |
-- Window manager operations
-- manage. Add a new window to be managed in the current workspace.
-- Bring it into focus.
--
-- Whether the window is already managed, or not, it is mapped, has its
-- border set, and its event mask set.
--
manage :: Window -> X ()
manage w = whenX (fmap not $ isClient w) $ withDisplay $ \d -> do
setInitialProperties w
sh <- io $ getWMNormalHints d w
let isFixedSize = sh_min_size sh /= Nothing && sh_min_size sh == sh_max_size sh
isTransient <- isJust `liftM` io (getTransientForHint d w)
(sc, rr) <- floatLocation w
-- ensure that float windows don't go over the edge of the screen
let adjust (W.RationalRect x y wid h) | x + wid >= 1 || y + wid >= 1 || x <= 0 || y <= 0
= W.RationalRect (0.5 - wid/2) (0.5 - h/2) wid h
adjust r = r
let f ws | isFixedSize || isTransient = W.float w (adjust rr) . W.insertUp w . W.view i $ ws
| otherwise = W.insertUp w ws
where i = fromMaybe (W.tag . W.workspace . W.current $ ws) $ W.lookupWorkspace sc ws
windows f
-- | unmanage. A window no longer exists, remove it from the window
-- list, on whatever workspace it is.
--
-- should also unmap?
--
unmanage :: Window -> X ()
unmanage w = do
windows (W.delete w)
setWMState w 0 {-withdrawn-}
modify (\s -> s {mapped = S.delete w (mapped s), waitingUnmap = M.delete w (waitingUnmap s)})
-- | Modify the size of the status gap at the top of the current screen
-- Taking a function giving the current screen, and current geometry.
modifyGap :: (Int -> (Int,Int,Int,Int) -> (Int,Int,Int,Int)) -> X ()
modifyGap f = do
windows $ \ws@(W.StackSet { W.current = c@(W.Screen { W.screenDetail = sd }) }) ->
let n = fromIntegral . W.screen $ c
g = f n . statusGap $ sd
in ws { W.current = c { W.screenDetail = sd { statusGap = g } } }
-- | Kill the currently focused client. If we do kill it, we'll get a
-- delete notify back from X.
--
-- There are two ways to delete a window. Either just kill it, or if it
-- supports the delete protocol, send a delete event (e.g. firefox)
--
kill :: X ()
kill = withDisplay $ \d -> withFocused $ \w -> do
wmdelt <- atom_WM_DELETE_WINDOW ; wmprot <- atom_WM_PROTOCOLS
protocols <- io $ getWMProtocols d w
io $ if wmdelt `elem` protocols
then allocaXEvent $ \ev -> do
setEventType ev clientMessage
setClientMessageEvent ev w wmprot 32 wmdelt 0
sendEvent d w False noEventMask ev
else killClient d w >> return ()
-- ---------------------------------------------------------------------
-- Managing windows
data LayoutMessages = Hide | ReleaseResources deriving ( Typeable, Eq )
instance Message LayoutMessages
-- | windows. Modify the current window list with a pure function, and refresh
windows :: (WindowSet -> WindowSet) -> X ()
windows f = do
XState { windowset = old } <- get
let oldvisible = concatMap (W.integrate' . W.stack . W.workspace) $ W.current old : W.visible old
ws = f old
modify (\s -> s { windowset = ws })
d <- asks display
-- notify non visibility
let oldvistags = map (W.tag . W.workspace) $ W.current old : W.visible old
gottenHidden = filter (\w -> elem w oldvistags) $ map W.tag $ W.hidden ws
sendMessageToWorkspaces Hide gottenHidden
-- for each workspace, layout the currently visible workspaces
let allscreens = W.screens ws
summed_visible = scanl (++) [] $ map (W.integrate' . W.stack . W.workspace) allscreens
visible <- fmap concat $ forM (zip allscreens summed_visible) $ \ (w, vis) -> do
let n = W.tag (W.workspace w)
this = W.view n ws
l = W.layout (W.workspace w)
flt = filter (flip M.member (W.floating ws)) (W.index this)
tiled = (W.stack . W.workspace . W.current $ this)
>>= W.filter (not . flip M.member (W.floating ws))
>>= W.filter (not . (`elem` vis))
(SD (Rectangle sx sy sw sh)
(gt,gb,gl,gr)) = W.screenDetail w
viewrect = Rectangle (sx + fromIntegral gl) (sy + fromIntegral gt)
(sw - fromIntegral (gl + gr)) (sh - fromIntegral (gt + gb))
-- just the tiled windows:
-- now tile the windows on this workspace, modified by the gap
(rs, ml') <- runLayout l viewrect tiled `catchX` runLayout (SomeLayout Full) viewrect tiled
mapM_ (uncurry tileWindow) rs
whenJust ml' $ \l' -> runOnWorkspaces (\ww -> if W.tag ww == n
then return $ ww { W.layout = l'}
else return ww)
-- now the floating windows:
-- move/resize the floating windows, if there are any
forM_ flt $ \fw -> whenJust (M.lookup fw (W.floating ws)) $
\(W.RationalRect rx ry rw rh) -> do
tileWindow fw $ Rectangle
(sx + floor (toRational sw*rx)) (sy + floor (toRational sh*ry))
(floor (toRational sw*rw)) (floor (toRational sh*rh))
let vs = flt ++ map fst rs
io $ restackWindows d vs
-- return the visible windows for this workspace:
return vs
setTopFocus
logHook
-- io performGC -- really helps, but seems to trigger GC bugs?
-- hide every window that was potentially visible before, but is not
-- given a position by a layout now.
mapM_ hide (nub oldvisible \\ visible)
clearEvents enterWindowMask
-- | setWMState. set the WM_STATE property
setWMState :: Window -> Int -> X ()
setWMState w v = withDisplay $ \dpy -> do
a <- atom_WM_STATE
io $ changeProperty32 dpy w a a propModeReplace [fromIntegral v, fromIntegral none]
-- | hide. Hide a window by unmapping it, and setting Iconified.
hide :: Window -> X ()
hide w = whenX (gets (S.member w . mapped)) $ withDisplay $ \d -> do
io $ do selectInput d w (clientMask .&. complement structureNotifyMask)
unmapWindow d w
selectInput d w clientMask
setWMState w 3 --iconic
-- this part is key: we increment the waitingUnmap counter to distinguish
-- between client and xmonad initiated unmaps.
modify (\s -> s { waitingUnmap = M.insertWith (+) w 1 (waitingUnmap s)
, mapped = S.delete w (mapped s) })
-- | reveal. Show a window by mapping it and setting Normal
-- this is harmless if the window was already visible
reveal :: Window -> X ()
reveal w = withDisplay $ \d -> do
setWMState w 1 --normal
io $ mapWindow d w
modify (\s -> s { mapped = S.insert w (mapped s) })
-- | The client events that xmonad is interested in
clientMask :: EventMask
clientMask = structureNotifyMask .|. enterWindowMask .|. propertyChangeMask
-- | Set some properties when we initially gain control of a window
setInitialProperties :: Window -> X ()
setInitialProperties w = withDisplay $ \d -> io $ do
selectInput d w $ clientMask
setWindowBorderWidth d w borderWidth
-- | refresh. Render the currently visible workspaces, as determined by
-- the StackSet. Also, set focus to the focused window.
--
-- This is our 'view' operation (MVC), in that it pretty prints our model
-- with X calls.
--
refresh :: X ()
refresh = windows id
-- | clearEvents. Remove all events of a given type from the event queue.
clearEvents :: EventMask -> X ()
clearEvents mask = withDisplay $ \d -> io $ do
sync d False
allocaXEvent $ \p -> fix $ \again -> do
more <- checkMaskEvent d mask p
when more again -- beautiful
-- | tileWindow. Moves and resizes w such that it fits inside the given
-- rectangle, including its border.
tileWindow :: Window -> Rectangle -> X ()
tileWindow w r = withDisplay $ \d -> do
bw <- (fromIntegral . wa_border_width) `liftM` io (getWindowAttributes d w)
-- give all windows at least 1x1 pixels
let least x | x <= bw*2 = 1
| otherwise = x - bw*2
io $ moveResizeWindow d w (rect_x r) (rect_y r)
(least $ rect_width r) (least $ rect_height r)
reveal w
-- ---------------------------------------------------------------------
-- | rescreen. The screen configuration may have changed (due to
-- xrandr), update the state and refresh the screen, and reset the gap.
rescreen :: X ()
rescreen = do
xinesc <- withDisplay (io . getScreenInfo)
windows $ \ws@(W.StackSet { W.current = v, W.visible = vs, W.hidden = hs }) ->
let (xs, ys) = splitAt (length xinesc) $ map W.workspace (v:vs) ++ hs
(a:as) = zipWith3 W.Screen xs [0..] $ zipWith SD xinesc gs
sgs = map (statusGap . W.screenDetail) (v:vs)
gs = take (length xinesc) (sgs ++ repeat (0,0,0,0))
in ws { W.current = a
, W.visible = as
, W.hidden = ys }
-- ---------------------------------------------------------------------
-- | setButtonGrab. Tell whether or not to intercept clicks on a given window
setButtonGrab :: Bool -> Window -> X ()
setButtonGrab grab w = withDisplay $ \d -> io $
if grab
then forM_ [button1, button2, button3] $ \b ->
grabButton d b anyModifier w False buttonPressMask
grabModeAsync grabModeSync none none
else ungrabButton d anyButton anyModifier w
-- ---------------------------------------------------------------------
-- Setting keyboard focus
-- | Set the focus to the window on top of the stack, or root
setTopFocus :: X ()
setTopFocus = withWindowSet $ maybe (setFocusX =<< asks theRoot) setFocusX . W.peek
-- | Set focus explicitly to window 'w' if it is managed by us, or root.
-- This happens if X notices we've moved the mouse (and perhaps moved
-- the mouse to a new screen).
focus :: Window -> X ()
focus w = withWindowSet $ \s -> do
if W.member w s then when (W.peek s /= Just w) $ windows (W.focusWindow w)
else whenX (isRoot w) $ setFocusX w
-- | Call X to set the keyboard focus details.
setFocusX :: Window -> X ()
setFocusX w = withWindowSet $ \ws -> do
XConf { display = dpy , normalBorder = nbc, focusedBorder = fbc } <- ask
-- clear mouse button grab and border on other windows
forM_ (W.current ws : W.visible ws) $ \wk -> do
forM_ (W.index (W.view (W.tag (W.workspace wk)) ws)) $ \otherw -> do
setButtonGrab True otherw
io $ setWindowBorder dpy otherw nbc
-- If we ungrab buttons on the root window, we lose our mouse bindings.
whenX (not `liftM` isRoot w) $ setButtonGrab False w
io $ do setInputFocus dpy w revertToPointerRoot 0
-- raiseWindow dpy w
io $ setWindowBorder dpy w fbc
-- | Throw a message to the current Layout possibly modifying how we
-- layout the windows, then refresh.
--
sendMessage :: Message a => a -> X ()
sendMessage a = do w <- (W.workspace . W.current) `fmap` gets windowset
ml' <- handleMessage (W.layout w) (SomeMessage a) `catchX` return Nothing
whenJust ml' $ \l' ->
do windows $ \ws -> ws { W.current = (W.current ws)
{ W.workspace = (W.workspace $ W.current ws)
{ W.layout = l' }}}
-- | Send a message to a list of workspaces' layouts, without necessarily refreshing.
sendMessageToWorkspaces :: Message a => a -> [WorkspaceId] -> X ()
sendMessageToWorkspaces a l = runOnWorkspaces modw
where modw w = if W.tag w `elem` l
then do ml' <- handleMessage (W.layout w) (SomeMessage a) `catchX` return Nothing
return $ w { W.layout = maybe (W.layout w) id ml' }
else return w
-- | Send a message to all visible layouts, without necessarily refreshing.
-- This is how we implement the hooks, such as UnDoLayout.
broadcastMessage :: Message a => a -> X ()
broadcastMessage a = runOnWorkspaces modw
where modw w = do ml' <- handleMessage (W.layout w) (SomeMessage a) `catchX` return Nothing
return $ w { W.layout = maybe (W.layout w) id ml' }
runOnWorkspaces :: (WindowSpace -> X WindowSpace) -> X ()
runOnWorkspaces job = do ws <- gets windowset
h <- mapM job $ W.hidden ws
c:v <- mapM (\s -> fmap (\w -> s { W.workspace = w}) $ job (W.workspace s))
$ W.current ws : W.visible ws
modify $ \s -> s { windowset = ws { W.current = c, W.visible = v, W.hidden = h } }
instance Message Event
-- | Set the layout of the currently viewed workspace
setLayout :: SomeLayout Window -> X ()
setLayout l = do
ss@(W.StackSet { W.current = c@(W.Screen { W.workspace = ws })}) <- gets windowset
handleMessage (W.layout ws) (SomeMessage ReleaseResources)
windows $ const $ ss {W.current = c { W.workspace = ws { W.layout = l } } }
-- Layout selection manager
-- This is a layout that allows users to switch between various layout
-- options. This layout accepts three Messages, NextLayout, PrevLayout and
-- JumpToLayout.
data ChangeLayout = NextLayout | PrevLayout | JumpToLayout String
deriving ( Eq, Show, Typeable )
instance Message ChangeLayout
instance ReadableSomeLayout Window where
defaults = SomeLayout (LayoutSelection defaultLayouts) :
SomeLayout Full : SomeLayout (Tall 1 0.1 0.5) :
SomeLayout (Mirror $ Tall 1 0.1 0.5) :
defaultLayouts ++ otherPossibleLayouts
data LayoutSelection a = LayoutSelection [SomeLayout a]
deriving ( Show, Read )
instance ReadableSomeLayout a => Layout LayoutSelection a where
doLayout (LayoutSelection (l:ls)) r s =
do (x,ml') <- doLayout l r s
return (x, (\l' -> LayoutSelection (l':ls)) `fmap` ml')
doLayout (LayoutSelection []) r s = do (x,_) <- doLayout Full r s
return (x,Nothing)
-- respond to messages only when there's an actual choice:
handleMessage (LayoutSelection (l:ls@(_:_))) m
| Just NextLayout <- fromMessage m = switchl rls
| Just PrevLayout <- fromMessage m = switchl rls'
| Just (JumpToLayout x) <- fromMessage m = switchl (j x)
| Just ReleaseResources <- fromMessage m =
do mlls' <- mapM (\ll -> handleMessage ll m) (l:ls)
let lls' = zipWith (\x mx -> maybe x id mx) (l:ls) mlls'
return $ Just $ LayoutSelection lls'
where rls (x:xs) = xs ++ [x]
rls [] = []
rls' = reverse . rls . reverse
j s zs = case partition (\z -> s == description z) zs of
(xs,ys) -> xs++ys
switchl f = do ml' <- handleMessage l (SomeMessage Hide)
return $ Just (LayoutSelection $ f $ fromMaybe l ml':ls)
-- otherwise, or if we don't understand the message, pass it along to the real
-- layout:
handleMessage (LayoutSelection (l:ls)) m
= do ml' <- handleMessage l m
return $ (\l' -> LayoutSelection (l':ls)) `fmap` ml'
-- Unless there is no layout...
handleMessage (LayoutSelection []) _ = return Nothing
description (LayoutSelection (x:_)) = description x
description _ = "default"
--
-- Builtin layout algorithms:
--
-- fullscreen mode
-- tall mode
--
-- The latter algorithms support the following operations:
--
-- Shrink
-- Expand
--
data Resize = Shrink | Expand deriving Typeable
data IncMasterN = IncMasterN Int deriving Typeable
instance Message Resize
instance Message IncMasterN
-- simple fullscreen mode, just render all windows fullscreen.
-- a plea for tuple sections: map . (,sc)
data Full a = Full deriving ( Show, Read )
instance Layout Full a
--
-- The tiling mode of xmonad, and its operations.
--
data Tall a = Tall Int Rational Rational deriving ( Show, Read )
instance Layout Tall a where
doLayout (Tall nmaster _ frac) r =
return . (\x->(x,Nothing)) .
ap zip (tile frac r nmaster . length) . W.integrate
handleMessage (Tall nmaster delta frac) m =
return $ msum [fmap resize (fromMessage m)
,fmap incmastern (fromMessage m)]
where resize Shrink = Tall nmaster delta (max 0 $ frac-delta)
resize Expand = Tall nmaster delta (min 1 $ frac+delta)
incmastern (IncMasterN d) = Tall (max 0 (nmaster+d)) delta frac
description _ = "Tall"
-- | Mirror a rectangle
mirrorRect :: Rectangle -> Rectangle
mirrorRect (Rectangle rx ry rw rh) = (Rectangle ry rx rh rw)
-- | Mirror a layout, compute its 90 degree rotated form.
data Mirror l a = Mirror (l a) deriving (Show, Read)
instance Layout l a => Layout (Mirror l) a where
doLayout (Mirror l) r s = (map (second mirrorRect) *** fmap Mirror)
`fmap` doLayout l (mirrorRect r) s
handleMessage (Mirror l) = fmap (fmap Mirror) . handleMessage l
description (Mirror l) = "Mirror "++ description l
-- | tile. Compute the positions for windows using the default 2 pane tiling algorithm.
--
-- The screen is divided (currently) into two panes. all clients are
-- then partioned between these two panes. one pane, the `master', by
-- convention has the least number of windows in it (by default, 1).
-- the variable `nmaster' controls how many windows are rendered in the
-- master pane.
--
-- `delta' specifies the ratio of the screen to resize by.
--
-- 'frac' specifies what proportion of the screen to devote to the
-- master area.
--
tile :: Rational -> Rectangle -> Int -> Int -> [Rectangle]
tile f r nmaster n = if n <= nmaster || nmaster == 0
then splitVertically n r
else splitVertically nmaster r1 ++ splitVertically (n-nmaster) r2 -- two columns
where (r1,r2) = splitHorizontallyBy f r
--
-- Divide the screen vertically into n subrectangles
--
splitVertically, splitHorizontally :: Int -> Rectangle -> [Rectangle]
splitVertically n r | n < 2 = [r]
splitVertically n (Rectangle sx sy sw sh) = Rectangle sx sy sw smallh :
splitVertically (n-1) (Rectangle sx (sy+fromIntegral smallh) sw (sh-smallh))
where smallh = sh `div` fromIntegral n --hmm, this is a fold or map.
splitHorizontally n = map mirrorRect . splitVertically n . mirrorRect
-- Divide the screen into two rectangles, using a rational to specify the ratio
splitHorizontallyBy, splitVerticallyBy :: RealFrac r => r -> Rectangle -> (Rectangle, Rectangle)
splitHorizontallyBy f (Rectangle sx sy sw sh) =
( Rectangle sx sy leftw sh
, Rectangle (sx + fromIntegral leftw) sy (sw-fromIntegral leftw) sh)
where leftw = floor $ fromIntegral sw * f
splitVerticallyBy f = (mirrorRect *** mirrorRect) . splitHorizontallyBy f . mirrorRect
------------------------------------------------------------------------
-- Utilities
-- | Return workspace visible on screen 'sc', or Nothing.
screenWorkspace :: ScreenId -> X (Maybe WorkspaceId)
screenWorkspace sc = withWindowSet $ return . W.lookupWorkspace sc
-- | Apply an X operation to the currently focused window, if there is one.
withFocused :: (Window -> X ()) -> X ()
withFocused f = withWindowSet $ \w -> whenJust (W.peek w) f
-- | True if window is under management by us
isClient :: Window -> X Bool
isClient w = withWindowSet $ return . W.member w
-- | Combinations of extra modifier masks we need to grab keys\/buttons for.
-- (numlock and capslock)
extraModifiers :: [KeyMask]
extraModifiers = [0, numlockMask, lockMask, numlockMask .|. lockMask ]
-- | Strip numlock\/capslock from a mask
cleanMask :: KeyMask -> KeyMask
cleanMask = (complement (numlockMask .|. lockMask) .&.)
-- | Get the Pixel value for a named color
initColor :: Display -> String -> IO Pixel
initColor dpy c = (color_pixel . fst) `liftM` allocNamedColor dpy colormap c
where colormap = defaultColormap dpy (defaultScreen dpy)
------------------------------------------------------------------------
-- | Floating layer support
-- | Given a window, find the screen it is located on, and compute
-- the geometry of that window wrt. that screen.
floatLocation :: Window -> X (ScreenId, W.RationalRect)
floatLocation w = withDisplay $ \d -> do
ws <- gets windowset
wa <- io $ getWindowAttributes d w
let sc = fromMaybe (W.current ws) $ find (pointWithin (fi $ wa_x wa) (fi $ wa_y wa) . screenRect . W.screenDetail) $ W.screens ws
sr = screenRect . W.screenDetail $ sc
bw = fi . wa_border_width $ wa
rr = W.RationalRect ((fi (wa_x wa) - fi (rect_x sr)) % fi (rect_width sr))
((fi (wa_y wa) - fi (rect_y sr)) % fi (rect_height sr))
(fi (wa_width wa + bw*2) % fi (rect_width sr))
(fi (wa_height wa + bw*2) % fi (rect_height sr))
return (W.screen $ sc, rr)
where fi x = fromIntegral x
pointWithin :: Integer -> Integer -> Rectangle -> Bool
pointWithin x y r = x >= fi (rect_x r) &&
x < fi (rect_x r) + fi (rect_width r) &&
y >= fi (rect_y r) &&
y < fi (rect_y r) + fi (rect_height r)
-- | Make a tiled window floating, using its suggested rectangle
float :: Window -> X ()
float w = do
(sc, rr) <- floatLocation w
windows $ \ws -> W.float w rr . fromMaybe ws $ do
i <- W.findIndex w ws
guard $ i `elem` map (W.tag . W.workspace) (W.screens ws)
f <- W.peek ws
sw <- W.lookupWorkspace sc ws
return (W.focusWindow f . W.shiftWin sw w $ ws)
-- ---------------------------------------------------------------------
-- Mouse handling
-- | Accumulate mouse motion events
mouseDrag :: (Position -> Position -> X ()) -> X () -> X ()
mouseDrag f done = do
drag <- gets dragging
case drag of
Just _ -> return () -- error case? we're already dragging
Nothing -> do
XConf { theRoot = root, display = d } <- ask
io $ grabPointer d root False (buttonReleaseMask .|. pointerMotionMask)
grabModeAsync grabModeAsync none none currentTime
modify $ \s -> s { dragging = Just (motion, cleanup) }
where
cleanup = do
withDisplay $ io . flip ungrabPointer currentTime
modify $ \s -> s { dragging = Nothing }
done
motion x y = do z <- f x y
clearEvents pointerMotionMask
return z
mouseMoveWindow :: Window -> X ()
mouseMoveWindow w = whenX (isClient w) $ withDisplay $ \d -> do
io $ raiseWindow d w
wa <- io $ getWindowAttributes d w
(_, _, _, ox', oy', _, _, _) <- io $ queryPointer d w
let ox = fromIntegral ox'
oy = fromIntegral oy'
mouseDrag (\ex ey -> io $ moveWindow d w (fromIntegral (fromIntegral (wa_x wa) + (ex - ox)))
(fromIntegral (fromIntegral (wa_y wa) + (ey - oy))))
(float w)
mouseResizeWindow :: Window -> X ()
mouseResizeWindow w = whenX (isClient w) $ withDisplay $ \d -> do
io $ raiseWindow d w
wa <- io $ getWindowAttributes d w
sh <- io $ getWMNormalHints d w
io $ warpPointer d none w 0 0 0 0 (fromIntegral (wa_width wa)) (fromIntegral (wa_height wa))
mouseDrag (\ex ey -> do
io $ resizeWindow d w `uncurry`
applySizeHints sh (ex - fromIntegral (wa_x wa),
ey - fromIntegral (wa_y wa)))
(float w)
-- ---------------------------------------------------------------------
-- | Support for window size hints
type D = (Dimension, Dimension)
-- | Reduce the dimensions if needed to comply to the given SizeHints.
applySizeHints :: Integral a => SizeHints -> (a,a) -> D
applySizeHints sh (w,h) = applySizeHints' sh (fromIntegral $ max 1 w,
fromIntegral $ max 1 h)
applySizeHints' :: SizeHints -> D -> D
applySizeHints' sh =
maybe id applyMaxSizeHint (sh_max_size sh)
. maybe id (\(bw, bh) (w, h) -> (w+bw, h+bh)) (sh_base_size sh)
. maybe id applyResizeIncHint (sh_resize_inc sh)
. maybe id applyAspectHint (sh_aspect sh)
. maybe id (\(bw,bh) (w,h) -> (w-bw, h-bh)) (sh_base_size sh)
-- | Reduce the dimensions so their aspect ratio falls between the two given aspect ratios.
applyAspectHint :: (D, D) -> D -> D
applyAspectHint ((minx, miny), (maxx, maxy)) x@(w,h)
| or [minx < 1, miny < 1, maxx < 1, maxy < 1] = x
| w * maxy > h * maxx = (h * maxx `div` maxy, h)
| w * miny < h * minx = (w, w * miny `div` minx)
| otherwise = x
-- | Reduce the dimensions so they are a multiple of the size increments.
applyResizeIncHint :: D -> D -> D
applyResizeIncHint (iw,ih) x@(w,h) =
if iw > 0 && ih > 0 then (w - w `mod` iw, h - h `mod` ih) else x
-- | Reduce the dimensions if they exceed the given maximum dimensions.
applyMaxSizeHint :: D -> D -> D
applyMaxSizeHint (mw,mh) x@(w,h) =
if mw > 0 && mh > 0 then (min w mw,min h mh) else x
|