1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
{-# OPTIONS -fglasgow-exts #-}
-----------------------------------------------------------------------------
-- |
-- Module : Operations.hs
-- Copyright : (c) Spencer Janssen 2007
-- License : BSD3-style (see LICENSE)
--
-- Maintainer : dons@cse.unsw.edu.au
-- Stability : unstable
-- Portability : not portable, mtl, posix
--
-----------------------------------------------------------------------------
module Operations where
import XMonad
import qualified StackSet as W
import {-# SOURCE #-} Config (borderWidth)
import Data.Maybe
import Data.List (genericIndex, intersectBy)
import Data.Bits ((.|.))
import qualified Data.Map as M
-- import System.Mem (performGC)
import Control.Monad.State
import Control.Monad.Reader
import Control.Arrow
import Graphics.X11.Xlib
import Graphics.X11.Xinerama (getScreenInfo)
import Graphics.X11.Xlib.Extras
-- ---------------------------------------------------------------------
-- Window manager operations
-- | manage. Add a new window to be managed in the current workspace.
-- Bring it into focus. If the window is already managed, nothing happens.
--
manage :: Window -> X ()
manage w = do
withDisplay $ \d -> io $ do
selectInput d w $ structureNotifyMask .|. enterWindowMask .|. propertyChangeMask
mapWindow d w
setWindowBorderWidth d w borderWidth
windows $ W.insertUp w
-- | unmanage. A window no longer exists, remove it from the window
-- list, on whatever workspace it is.
unmanage :: Window -> X ()
unmanage = windows . W.delete
-- | focus. focus window up or down. or swap various windows.
focusUp, focusDown, swapUp, swapDown, swapMaster :: X ()
focusUp = windows W.focusUp
focusDown = windows W.focusDown
swapUp = windows W.swapUp
swapDown = windows W.swapDown
swapMaster = windows W.swapMaster
-- | shift. Move a window to a new workspace, 0 indexed.
shift :: WorkspaceId -> X ()
shift n = withFocused hide >> windows (W.shift n)
-- refresh will raise it if we didn't need to move it.
-- | view. Change the current workspace to workspace at offset n (0 indexed).
view :: WorkspaceId -> X ()
view = windows . W.view
-- | Kill the currently focused client. If we do kill it, we'll get a
-- delete notify back from X.
--
-- There are two ways to delete a window. Either just kill it, or if it
-- supports the delete protocol, send a delete event (e.g. firefox)
--
kill :: X ()
kill = withDisplay $ \d -> withFocused $ \w -> do
XConf {wmdelete = wmdelt, wmprotocols = wmprot} <- ask
protocols <- io $ getWMProtocols d w
io $ if wmdelt `elem` protocols
then allocaXEvent $ \ev -> do
setEventType ev clientMessage
setClientMessageEvent ev w wmprot 32 wmdelt 0
sendEvent d w False noEventMask ev
else killClient d w >> return ()
-- ---------------------------------------------------------------------
-- Managing windows
-- | windows. Modify the current window list with a pure function, and refresh
windows :: (WindowSet -> WindowSet) -> X ()
windows f = do
old <- gets windowset
let new = f old
modify (\s -> s { windowset = new })
refresh
-- We now go to some effort to compute the minimal set of windows to hide.
-- The minimal set being only those windows which weren't previously hidden,
-- which is the intersection of previously visible windows with those now hidden
mapM_ hide . concatMap (integrate . W.stack) $
intersectBy (\w x -> W.tag w == W.tag x)
(map W.workspace $ W.current old : W.visible old)
(W.hidden new)
clearEnterEvents
-- TODO: move this into StackSet. This isn't exactly the usual integrate.
where integrate W.Empty = []
integrate (W.Node x l r) = x : l ++ r
-- | hide. Hide a window by moving it off screen.
hide :: Window -> X ()
hide w = withDisplay $ \d -> do
(sw,sh) <- gets dimensions
io $ moveWindow d w sw sh
-- | refresh. Render the currently visible workspaces, as determined by
-- the StackSet. Also, set focus to the focused window.
--
-- This is our 'view' operation (MVC), in that it pretty prints our model
-- with X calls.
--
refresh :: X ()
refresh = do
XState { windowset = ws, layouts = fls, xineScreens = xinesc } <- get
d <- asks display
-- for each workspace, layout the currently visible workspaces
(`mapM_` (W.current ws : W.visible ws)) $ \w -> do
let n = W.tag (W.workspace w)
this = W.view n ws
Just l = fmap fst $ M.lookup n fls
-- now tile the windows on this workspace
rs <- doLayout l (genericIndex xinesc (W.screen w)) (W.index this)
mapM_ (\(win,rect) -> io (tileWindow d win rect)) rs
-- and raise the focused window if there is one.
whenJust (W.peek this) $ io . raiseWindow d
setTopFocus
clearEnterEvents
-- io performGC -- really helps
-- | clearEnterEvents. Remove all window entry events from the event queue.
clearEnterEvents :: X ()
clearEnterEvents = withDisplay $ \d -> io $ do
sync d False
allocaXEvent $ \p -> fix $ \again -> do
more <- checkMaskEvent d enterWindowMask p
when more again -- beautiful
-- | tileWindow. Moves and resizes w such that it fits inside the given
-- rectangle, including its border.
tileWindow :: Display -> Window -> Rectangle -> IO ()
tileWindow d w r = do
bw <- (fromIntegral . wa_border_width) `liftM` getWindowAttributes d w
moveResizeWindow d w (rect_x r) (rect_y r)
(rect_width r - bw*2) (rect_height r - bw*2)
-- ---------------------------------------------------------------------
-- | rescreen. The screen configuration may have changed (due to
-- xrandr), update the state and refresh the screen.
rescreen :: X ()
rescreen = do
xinesc <- withDisplay (io . getScreenInfo)
-- TODO: This stuff is necessary because Xlib apparently caches screen
-- width/height. Find a better solution later. I hate Xlib.
let sx = maximum $ map (\r -> rect_x r + fromIntegral (rect_width r)) xinesc
sy = maximum $ map (\r -> rect_y r + fromIntegral (rect_height r)) xinesc
modify (\s -> s { xineScreens = xinesc, dimensions = (sx, sy) })
windows $ \ws@(W.StackSet { W.current = v, W.visible = vs, W.hidden = hs }) ->
let (x:xs, ys) = splitAt (length xinesc) $ map W.workspace (v:vs) ++ hs
in ws { W.current = W.Screen x 0
, W.visible = zipWith W.Screen xs [1 ..]
, W.hidden = ys }
-- ---------------------------------------------------------------------
buttonsToGrab :: [Button]
buttonsToGrab = [button1, button2, button3]
-- | setButtonGrab. Tell whether or not to intercept clicks on a given window
setButtonGrab :: Bool -> Window -> X ()
setButtonGrab grab w = withDisplay $ \d -> io $ (`mapM_` buttonsToGrab) $ \b ->
if grab then grabButton d b anyModifier w False (buttonPressMask .|. buttonReleaseMask)
grabModeAsync grabModeSync none none
else ungrabButton d b anyModifier w
-- ---------------------------------------------------------------------
-- Setting keyboard focus
-- | Set the focus to the window on top of the stack, or root
setTopFocus :: X ()
setTopFocus = withWorkspace $ maybe (setFocusX =<< asks theRoot) setFocusX . W.peek
-- | Set focus explicitly to window 'w' if it is managed by us, or root.
focus :: Window -> X ()
focus w = withWorkspace $ \s -> do
if W.member w s then do modify $ \st -> st { windowset = W.focusWindow w s } -- avoid 'refresh'
setFocusX w
else whenX (isRoot w) $ setFocusX w
-- | Call X to set the keyboard focus details.
setFocusX :: Window -> X ()
setFocusX w = withWorkspace $ \ws -> do
XConf { display = dpy , normalBorder = nbc, focusedBorder = fbc } <- ask
-- clear mouse button grab and border on other windows
(`mapM_` (W.current ws : W.visible ws)) $ \wk -> do
(`mapM_` (W.index (W.view (W.tag (W.workspace wk)) ws))) $ \otherw -> do
setButtonGrab True otherw
io $ setWindowBorder dpy otherw (color_pixel nbc)
withDisplay $ \d -> io $ setInputFocus d w revertToPointerRoot 0
setButtonGrab False w
io $ setWindowBorder dpy w (color_pixel fbc)
-- ---------------------------------------------------------------------
-- Managing layout
-- | switchLayout. Switch to another layout scheme. Switches the
-- layout of the current workspace. By convention, a window set as
-- master in Tall mode remains as master in Wide mode. When switching
-- from full screen to a tiling mode, the currently focused window
-- becomes a master. When switching back , the focused window is
-- uppermost.
--
switchLayout :: X ()
switchLayout = layout (\(x, xs) -> let xs' = xs ++ [x] in (head xs', tail xs'))
-- | Throw an (extensible) message value to the current Layout scheme,
-- possibly modifying how we layout the windows, then refresh.
--
-- TODO, this will refresh on Nothing.
--
sendMessage :: Message a => a -> X ()
sendMessage a = layout $ \x@(l, ls) -> maybe x (flip (,) ls) (modifyLayout l (SomeMessage a))
--
-- Builtin layout algorithms:
--
-- fullscreen mode
-- tall mode
-- wide mode
--
-- The latter algorithms support the following operations:
--
-- Shrink
-- Expand
--
data Resize = Shrink | Expand deriving Typeable
instance Message Resize
data IncMasterN = IncMasterN Int deriving Typeable
instance Message IncMasterN
full :: Layout
full = Layout { doLayout = \sc ws -> return [ (w,sc) | w <- ws ]
, modifyLayout = const Nothing } -- no changes
tall, wide :: Int -> Rational -> Rational -> Layout
wide nmaster delta frac = mirrorLayout (tall nmaster delta frac)
tall nmaster delta frac =
Layout { doLayout = \r -> return . ap zip (tile frac r nmaster . length)
, modifyLayout = \m -> fmap resize (fromMessage m) `mplus`
fmap incmastern (fromMessage m) }
where resize Shrink = tall nmaster delta (frac-delta)
resize Expand = tall nmaster delta (frac+delta)
incmastern (IncMasterN d) = tall (max 1 (nmaster+d)) delta frac
-- | Mirror a rectangle
mirrorRect :: Rectangle -> Rectangle
mirrorRect (Rectangle rx ry rw rh) = (Rectangle ry rx rh rw)
-- | Mirror a layout
mirrorLayout :: Layout -> Layout
mirrorLayout (Layout { doLayout = dl, modifyLayout = ml }) =
Layout { doLayout = \sc w -> map (second mirrorRect) `fmap` dl (mirrorRect sc) w
, modifyLayout = fmap mirrorLayout . ml }
-- | tile. Compute the positions for windows in our default tiling modes
-- Tiling algorithms in the core should satisify the constraint that
--
-- * no windows overlap
-- * no gaps exist between windows.
--
tile :: Rational -> Rectangle -> Int -> Int -> [Rectangle]
tile f r nmaster n | n <= nmaster = splitVertically n r
| otherwise = splitVertically nmaster r1 ++ splitVertically (n-nmaster) r2
where (r1,r2) = splitHorizontallyBy f r
splitVertically, splitHorizontally :: Int -> Rectangle -> [Rectangle]
splitVertically n r | n < 2 = [r]
splitVertically n (Rectangle sx sy sw sh) = Rectangle sx sy sw smallh :
splitVertically (n-1) (Rectangle sx (sy+fromIntegral smallh) sw (sh-smallh))
where smallh = sh `div` fromIntegral n
splitHorizontally n r = map mirrorRect $ splitVertically n $ mirrorRect r
splitHorizontallyBy, splitVerticallyBy :: Rational -> Rectangle -> (Rectangle, Rectangle)
splitHorizontallyBy f (Rectangle sx sy sw sh) =
(Rectangle sx sy leftw sh, Rectangle (sx + fromIntegral leftw) sy (sw-fromIntegral leftw) sh)
where leftw = floor $ fromIntegral sw * f
splitVerticallyBy f r = (\(a,b)->(mirrorRect a,mirrorRect b)) $ splitHorizontallyBy f $ mirrorRect r
------------------------------------------------------------------------
-- | layout. Modify the current workspace's layout with a pure
-- function and refresh.
layout :: ((Layout, [Layout]) -> (Layout, [Layout])) -> X ()
layout f = do
modify $ \s ->
let n = W.tag . W.workspace . W.current . windowset $ s
(Just fl) = M.lookup n $ layouts s
in s { layouts = M.insert n (f fl) (layouts s) }
refresh
------------------------------------------------------------------------
-- Utilities
-- | Return workspace visible on screen 'sc', or 0.
screenWorkspace :: ScreenId -> X WorkspaceId
screenWorkspace sc = withWorkspace $ return . fromMaybe 0 . W.lookupWorkspace sc
-- | Apply an X operation to the currently focused window, if there is one.
withFocused :: (Window -> X ()) -> X ()
withFocused f = withWorkspace $ \w -> whenJust (W.peek w) f
-- | True if window is under management by us
isClient :: Window -> X Bool
isClient w = withWorkspace $ return . W.member w
|