1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
{-# OPTIONS -fglasgow-exts #-}
module Properties where
import XMonad.StackSet hiding (filter)
import qualified XMonad.StackSet as S (filter)
import Debug.Trace
import Data.Word
import Graphics.X11.Xlib.Types (Rectangle(..),Position,Dimension)
import Data.Ratio
import Data.Maybe
import System.Environment
import Control.Exception (assert)
import qualified Control.Exception as C
import Control.Monad
import Test.QuickCheck hiding (promote)
import System.IO.Unsafe
import System.IO
import System.Random hiding (next)
import Text.Printf
import Data.List (nub,sort,sortBy,group,sort,intersperse,genericLength)
import qualified Data.List as L
import Data.Char (ord)
import Data.Map (keys,elems)
import qualified Data.Map as M
-- ---------------------------------------------------------------------
-- QuickCheck properties for the StackSet
-- Some general hints for creating StackSet properties:
--
-- * ops that mutate the StackSet are usually local
-- * most ops on StackSet should either be trivially reversible, or
-- idempotent, or both.
--
-- The all important Arbitrary instance for StackSet.
--
instance (Integral i, Integral s, Eq a, Arbitrary a, Arbitrary l, Arbitrary sd)
=> Arbitrary (StackSet i l a s sd) where
arbitrary = do
sz <- choose (1,10) -- number of workspaces
n <- choose (0,sz-1) -- pick one to be in focus
sc <- choose (1,sz) -- a number of physical screens
lay <- arbitrary -- pick any layout
sds <- replicateM sc arbitrary
ls <- vector sz -- a vector of sz workspaces
-- pick a random item in each stack to focus
fs <- sequence [ if null s then return Nothing
else liftM Just (choose ((-1),length s-1))
| s <- ls ]
return $ fromList (fromIntegral n, sds,fs,ls,lay)
coarbitrary = error "no coarbitrary for StackSet"
-- | fromList. Build a new StackSet from a list of list of elements,
-- keeping track of the currently focused workspace, and the total
-- number of workspaces. If there are duplicates in the list, the last
-- occurence wins.
--
-- 'o' random workspace
-- 'm' number of physical screens
-- 'fs' random focused window on each workspace
-- 'xs' list of list of windows
--
fromList :: (Integral i, Integral s, Eq a) => (i, [sd], [Maybe Int], [[a]], l) -> StackSet i l a s sd
fromList (_,_,_,[],_) = error "Cannot build a StackSet from an empty list"
fromList (o,m,fs,xs,l) =
let s = view o $
foldr (\(i,ys) s ->
foldr insertUp (view i s) ys)
(new l [0..genericLength xs-1] m) (zip [0..] xs)
in foldr (\f t -> case f of
Nothing -> t
Just i -> foldr (const focusUp) t [0..i] ) s fs
------------------------------------------------------------------------
--
-- Just generate StackSets with Char elements.
--
type T = StackSet (NonNegative Int) Int Char Int Int
-- Useful operation, the non-local workspaces
hidden_spaces x = map workspace (visible x) ++ hidden x
-- Basic data invariants of the StackSet
--
-- With the new zipper-based StackSet, tracking focus is no longer an
-- issue: the data structure enforces focus by construction.
--
-- But we still need to ensure there are no duplicates, and master/and
-- the xinerama mapping aren't checked by the data structure at all.
--
-- * no element should ever appear more than once in a StackSet
-- * the xinerama screen map should be:
-- -- keys should always index valid workspaces
-- -- monotonically ascending in the elements
-- * the current workspace should be a member of the xinerama screens
--
invariant (s :: T) = and
-- no duplicates
[ noDuplicates
-- all this xinerama stuff says we don't have the right structure
-- , validScreens
-- , validWorkspaces
-- , inBounds
]
where
ws = concat [ focus t : up t ++ down t
| w <- workspace (current s) : map workspace (visible s) ++ hidden s
, t <- maybeToList (stack w)] :: [Char]
noDuplicates = nub ws == ws
-- validScreens = monotonic . sort . M. . (W.current s : W.visible : W$ s
-- validWorkspaces = and [ w `elem` allworkspaces | w <- (M.keys . screens) s ]
-- where allworkspaces = map tag $ current s : prev s ++ next s
-- inBounds = and [ w >=0 && w < size s | (w,sc) <- M.assocs (screens s) ]
monotonic [] = True
monotonic (x:[]) = True
monotonic (x:y:zs) | x == y-1 = monotonic (y:zs)
| otherwise = False
prop_invariant = invariant
-- and check other ops preserve invariants
prop_empty_I (n :: Positive Int) l = forAll (choose (1,fromIntegral n)) $ \m ->
forAll (vector m) $ \ms ->
invariant $ new l [0..fromIntegral n-1] ms
prop_view_I (n :: NonNegative Int) (x :: T) =
n `tagMember` x ==> invariant $ view (fromIntegral n) x
prop_greedyView_I (n :: NonNegative Int) (x :: T) =
n `tagMember` x ==> invariant $ view (fromIntegral n) x
prop_focusUp_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusUp) x [1..n]
prop_focusMaster_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusMaster) x [1..n]
prop_focusDown_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const focusDown) x [1..n]
prop_focus_I (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let w = focus . fromJust . stack . workspace . current $ foldr (const focusUp) x [1..n]
in invariant $ focusWindow w x
prop_insertUp_I n (x :: T) = invariant $ insertUp n x
prop_delete_I (x :: T) = invariant $
case peek x of
Nothing -> x
Just i -> delete i x
prop_swap_master_I (x :: T) = invariant $ swapMaster x
prop_swap_left_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const swapUp ) x [1..n]
prop_swap_right_I (n :: NonNegative Int) (x :: T) =
invariant $ foldr (const swapDown) x [1..n]
prop_shift_I (n :: NonNegative Int) (x :: T) =
n `tagMember` x ==> invariant $ shift (fromIntegral n) x
prop_shift_win_I (n :: NonNegative Int) (w :: Char) (x :: T) =
n `tagMember` x && w `member` x ==> invariant $ shiftWin (fromIntegral n) w x
-- ---------------------------------------------------------------------
-- 'new'
-- empty StackSets have no windows in them
prop_empty (EmptyStackSet x) =
all (== Nothing) [ stack w | w <- workspace (current x)
: map workspace (visible x) ++ hidden x ]
-- empty StackSets always have focus on first workspace
prop_empty_current (NonEmptyNubList ns) (NonEmptyNubList sds) l =
-- TODO, this is ugly
length sds <= length ns ==>
tag (workspace $ current x) == head ns
where x = new l ns sds :: T
-- no windows will be a member of an empty workspace
prop_member_empty i (EmptyStackSet x)
= member i x == False
-- ---------------------------------------------------------------------
-- viewing workspaces
-- view sets the current workspace to 'n'
prop_view_current (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
tag (workspace $ current (view i x)) == i
where
i = fromIntegral n
-- view *only* sets the current workspace, and touches Xinerama.
-- no workspace contents will be changed.
prop_view_local (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
workspaces x == workspaces (view i x)
where
workspaces a = sortBy (\s t -> tag s `compare` tag t) $
workspace (current a)
: map workspace (visible a) ++ hidden a
i = fromIntegral n
-- view should result in a visible xinerama screen
-- prop_view_xinerama (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
-- M.member i (screens (view i x))
-- where
-- i = fromIntegral n
-- view is idempotent
prop_view_idem (x :: T) (i :: NonNegative Int) = i `tagMember` x ==> view i (view i x) == (view i x)
-- view is reversible, though shuffles the order of hidden/visible
prop_view_reversible (i :: NonNegative Int) (x :: T) =
i `tagMember` x ==> normal (view n (view i x)) == normal x
where n = tag (workspace $ current x)
-- ---------------------------------------------------------------------
-- greedyViewing workspaces
-- greedyView sets the current workspace to 'n'
prop_greedyView_current (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
tag (workspace $ current (greedyView i x)) == i
where
i = fromIntegral n
-- greedyView *only* sets the current workspace, and touches Xinerama.
-- no workspace contents will be changed.
prop_greedyView_local (x :: T) (n :: NonNegative Int) = i `tagMember` x ==>
workspaces x == workspaces (greedyView i x)
where
workspaces a = sortBy (\s t -> tag s `compare` tag t) $
workspace (current a)
: map workspace (visible a) ++ hidden a
i = fromIntegral n
-- greedyView is idempotent
prop_greedyView_idem (x :: T) (i :: NonNegative Int) = i `tagMember` x ==> greedyView i (greedyView i x) == (greedyView i x)
-- greedyView is reversible, though shuffles the order of hidden/visible
prop_greedyView_reversible (i :: NonNegative Int) (x :: T) =
i `tagMember` x ==> normal (greedyView n (greedyView i x)) == normal x
where n = tag (workspace $ current x)
-- normalise workspace list
normal s = s { hidden = sortBy g (hidden s), visible = sortBy f (visible s) }
where
f = \a b -> tag (workspace a) `compare` tag (workspace b)
g = \a b -> tag a `compare` tag b
-- ---------------------------------------------------------------------
-- Xinerama
-- every screen should yield a valid workspace
-- prop_lookupWorkspace (n :: NonNegative Int) (x :: T) =
-- s < M.size (screens x) ==>
-- fromJust (lookupWorkspace s x) `elem` (map tag $ current x : prev x ++ next x)
-- where
-- s = fromIntegral n
-- ---------------------------------------------------------------------
-- peek/index
-- peek either yields nothing on the Empty workspace, or Just a valid window
prop_member_peek (x :: T) =
case peek x of
Nothing -> True {- then we don't know anything -}
Just i -> member i x
-- ---------------------------------------------------------------------
-- index
-- the list returned by index should be the same length as the actual
-- windows kept in the zipper
prop_index_length (x :: T) =
case stack . workspace . current $ x of
Nothing -> length (index x) == 0
Just it -> length (index x) == length (focus it : up it ++ down it)
-- ---------------------------------------------------------------------
-- rotating focus
--
-- master/focus
--
-- The tiling order, and master window, of a stack is unaffected by focus changes.
--
prop_focus_left_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusUp) x [1..n]) == index x
prop_focus_right_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusDown) x [1..n]) == index x
prop_focus_master_master (n :: NonNegative Int) (x::T) =
index (foldr (const focusMaster) x [1..n]) == index x
prop_focusWindow_master (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in index (focusWindow (s !! i) x) == index x
-- shifting focus is trivially reversible
prop_focus_left (x :: T) = (focusUp (focusDown x)) == x
prop_focus_right (x :: T) = (focusDown (focusUp x)) == x
-- focus master is idempotent
prop_focusMaster_idem (x :: T) = focusMaster x == focusMaster (focusMaster x)
-- focusWindow actually leaves the window focused...
prop_focusWindow_works (n :: NonNegative Int) (x :: T) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in (focus . fromJust . stack . workspace . current) (focusWindow (s !! i) x) == (s !! i)
-- rotation through the height of a stack gets us back to the start
prop_focus_all_l (x :: T) = (foldr (const focusUp) x [1..n]) == x
where n = length (index x)
prop_focus_all_r (x :: T) = (foldr (const focusDown) x [1..n]) == x
where n = length (index x)
-- prop_rotate_all (x :: T) = f (f x) == f x
-- f x' = foldr (\_ y -> rotate GT y) x' [1..n]
-- focus is local to the current workspace
prop_focus_down_local (x :: T) = hidden_spaces (focusDown x) == hidden_spaces x
prop_focus_up_local (x :: T) = hidden_spaces (focusUp x) == hidden_spaces x
prop_focus_master_local (x :: T) = hidden_spaces (focusMaster x) == hidden_spaces x
prop_focusWindow_local (n :: NonNegative Int) (x::T ) =
case peek x of
Nothing -> True
Just _ -> let s = index x
i = fromIntegral n `mod` length s
in hidden_spaces (focusWindow (s !! i) x) == hidden_spaces x
-- ---------------------------------------------------------------------
-- member/findTag
--
-- For all windows in the stackSet, findTag should identify the
-- correct workspace
--
prop_findIndex (x :: T) =
and [ tag w == fromJust (findTag i x)
| w <- workspace (current x) : map workspace (visible x) ++ hidden x
, t <- maybeToList (stack w)
, i <- focus t : up t ++ down t
]
prop_allWindowsMember w (x :: T) = (w `elem` allWindows x) ==> member w x
-- ---------------------------------------------------------------------
-- 'insert'
-- inserting a item into an empty stackset means that item is now a member
prop_insert_empty i (EmptyStackSet x)= member i (insertUp i x)
-- insert should be idempotent
prop_insert_idem i (x :: T) = insertUp i x == insertUp i (insertUp i x)
-- insert when an item is a member should leave the stackset unchanged
prop_insert_duplicate i (x :: T) = member i x ==> insertUp i x == x
-- push shouldn't change anything but the current workspace
prop_insert_local (x :: T) i = not (member i x) ==> hidden_spaces x == hidden_spaces (insertUp i x)
-- Inserting a (unique) list of items into an empty stackset should
-- result in the last inserted element having focus.
prop_insert_peek (EmptyStackSet x) (NonEmptyNubList is) =
peek (foldr insertUp x is) == Just (head is)
-- insert >> delete is the identity, when i `notElem` .
-- Except for the 'master', which is reset on insert and delete.
--
prop_insert_delete n x = not (member n x) ==> delete n (insertUp n y) == (y :: T)
where
y = swapMaster x -- sets the master window to the current focus.
-- otherwise, we don't have a rule for where master goes.
-- inserting n elements increases current stack size by n
prop_size_insert is (EmptyStackSet x) =
size (foldr insertUp x ws ) == (length ws)
where
ws = nub is
size = length . index
-- ---------------------------------------------------------------------
-- 'delete'
-- deleting the current item removes it.
prop_delete x =
case peek x of
Nothing -> True
Just i -> not (member i (delete i x))
where _ = x :: T
-- delete is reversible with 'insert'.
-- It is the identiy, except for the 'master', which is reset on insert and delete.
--
prop_delete_insert (x :: T) =
case peek x of
Nothing -> True
Just n -> insertUp n (delete n y) == y
where
y = swapMaster x
-- delete should be local
prop_delete_local (x :: T) =
case peek x of
Nothing -> True
Just i -> hidden_spaces x == hidden_spaces (delete i x)
-- delete should not affect focus unless the focused element is what is being deleted
prop_delete_focus n (x :: T) = member n x && Just n /= peek x ==> peek (delete n x) == peek x
-- focus movement in the presence of delete:
-- when the last window in the stack set is focused, focus moves `up'.
-- usual case is that it moves 'down'.
prop_delete_focus_end (x :: T) =
length (index x) > 1
==>
peek (delete n y) == peek (focusUp y)
where
n = last (index x)
y = focusWindow n x -- focus last window in stack
-- focus movement in the presence of delete:
-- when not in the last item in the stack, focus moves down
prop_delete_focus_not_end (x :: T) =
length (index x) > 1 &&
n /= last (index x)
==>
peek (delete n x) == peek (focusDown x)
where
Just n = peek x
-- ---------------------------------------------------------------------
-- filter
-- preserve order
prop_filter_order (x :: T) =
case stack $ workspace $ current x of
Nothing -> True
Just s@(Stack i _ _) -> integrate' (S.filter (/= i) s) == filter (/= i) (integrate' (Just s))
-- ---------------------------------------------------------------------
-- swapUp, swapDown, swapMaster: reordiring windows
-- swap is trivially reversible
prop_swap_left (x :: T) = (swapUp (swapDown x)) == x
prop_swap_right (x :: T) = (swapDown (swapUp x)) == x
-- TODO swap is reversible
-- swap is reversible, but involves moving focus back the window with
-- master on it. easy to do with a mouse...
{-
prop_promote_reversible x b = (not . null . fromMaybe [] . flip index x . current $ x) ==>
(raiseFocus y . promote . raiseFocus z . promote) x == x
where _ = x :: T
dir = if b then LT else GT
(Just y) = peek x
(Just (z:_)) = flip index x . current $ x
-}
-- swap doesn't change focus
prop_swap_master_focus (x :: T) = peek x == (peek $ swapMaster x)
-- = case peek x of
-- Nothing -> True
-- Just f -> focus (stack (workspace $ current (swap x))) == f
prop_swap_left_focus (x :: T) = peek x == (peek $ swapUp x)
prop_swap_right_focus (x :: T) = peek x == (peek $ swapDown x)
-- swap is local
prop_swap_master_local (x :: T) = hidden_spaces x == hidden_spaces (swapMaster x)
prop_swap_left_local (x :: T) = hidden_spaces x == hidden_spaces (swapUp x)
prop_swap_right_local (x :: T) = hidden_spaces x == hidden_spaces (swapDown x)
-- rotation through the height of a stack gets us back to the start
prop_swap_all_l (x :: T) = (foldr (const swapUp) x [1..n]) == x
where n = length (index x)
prop_swap_all_r (x :: T) = (foldr (const swapDown) x [1..n]) == x
where n = length (index x)
prop_swap_master_idempotent (x :: T) = swapMaster (swapMaster x) == swapMaster x
-- ---------------------------------------------------------------------
-- shift
-- shift is fully reversible on current window, when focus and master
-- are the same. otherwise, master may move.
prop_shift_reversible i (x :: T) =
i `tagMember` x ==> case peek y of
Nothing -> True
Just _ -> normal ((view n . shift n . view i . shift i) y) == normal y
where
y = swapMaster x
n = tag (workspace $ current y)
-- ---------------------------------------------------------------------
-- shiftWin
-- shiftWin on current window is the same as shift
prop_shift_win_focus i (x :: T) =
i `tagMember` x ==> case peek x of
Nothing -> True
Just w -> shiftWin i w x == shift i x
-- shiftWin on a non-existant window is identity
prop_shift_win_indentity i w (x :: T) =
i `tagMember` x && not (w `member` x) ==> shiftWin i w x == x
-- shiftWin leaves the current screen as it is, if neither i is the tag
-- of the current workspace nor w on the current workspace
prop_shift_win_fix_current i w (x :: T) =
i `tagMember` x && w `member` x && i /= n && findTag w x /= Just n
==> (current $ x) == (current $ shiftWin i w x)
where
n = tag (workspace $ current x)
------------------------------------------------------------------------
-- properties for the floating layer:
prop_float_reversible n (x :: T) =
n `member` x ==> sink n (float n geom x) == x
where
geom = RationalRect 100 100 100 100
-- check rectanges were set
{-
prop_float_sets_geometry n (x :: T) =
n `member` x ==> let y = float n geom x in M.lookup y (floating x) == Just geom
where
geom = RationalRect 100 100 100 100
-}
------------------------------------------------------------------------
prop_screens (x :: T) = n `elem` screens x
where
n = current x
prop_differentiate xs =
if null xs then differentiate xs == Nothing
else (differentiate xs) == Just (Stack (head xs) [] (tail xs))
where _ = xs :: [Int]
-- looking up the tag of the current workspace should always produce a tag.
prop_lookup_current (x :: T) = lookupWorkspace scr x == Just tg
where
(Screen (Workspace tg _ _) scr _) = current x
-- looking at a visible tag
prop_lookup_visible (x :: T) =
visible x /= [] ==>
fromJust (lookupWorkspace scr x) `elem` tags
where
tags = [ tag (workspace y) | y <- visible x ]
scr = last [ screen y | y <- visible x ]
-- ---------------------------------------------------------------------
-- testing for failure
-- and help out hpc
prop_abort x = unsafePerformIO $ C.catch (abort "fail")
(\e -> return $ show e == "xmonad: StackSet: fail" )
where
_ = x :: Int
-- new should fail with an abort
prop_new_abort x = unsafePerformIO $ C.catch f
(\e -> return $ show e == "xmonad: StackSet: non-positive argument to StackSet.new" )
where
f = new undefined{-layout-} [] [] `seq` return False
_ = x :: Int
-- prop_view_should_fail = view {- with some bogus data -}
-- screens makes sense
prop_screens_works (x :: T) = screens x == current x : visible x
------------------------------------------------------------------------
-- renaming tags
-- | Rename a given tag if present in the StackSet.
-- 408 renameTag :: Eq i => i -> i -> StackSet i l a s sd -> StackSet i l a s sd
prop_rename1 (x::T) o n = o `tagMember` x && not (n `tagMember` x) ==>
let y = renameTag o n x
in n `tagMember` y
prop_ensure (x :: T) l xs = let y = ensureTags l xs x
in and [ n `tagMember` y | n <- xs ]
prop_mapWorkspaceId (x::T) = x == mapWorkspace id x
prop_mapWorkspaceInverse (x::T) = x == mapWorkspace predTag (mapWorkspace succTag x)
where predTag w = w { tag = pred $ tag w }
succTag w = w { tag = succ $ tag w }
prop_mapLayoutId (x::T) = x == mapLayout id x
prop_mapLayoutInverse (x::T) = x == mapLayout pred (mapLayout succ x)
------------------------------------------------------------------------
-- some properties for layouts:
-- 1 window should always be tiled fullscreen
{-
prop_tile_fullscreen rect = tile pct rect 1 1 == [rect]
-- multiple windows
prop_tile_non_overlap rect windows nmaster = noOverlaps (tile pct rect nmaster windows)
where _ = rect :: Rectangle
pct = 3 % 100
noOverlaps [] = True
noOverlaps [_] = True
noOverlaps xs = and [ verts a `notOverlap` verts b
| a <- xs
, b <- filter (a /=) xs
]
where
verts (Rectangle a b w h) = (a,b,a + fromIntegral w - 1, b + fromIntegral h - 1)
notOverlap (left1,bottom1,right1,top1)
(left2,bottom2,right2,top2)
= (top1 < bottom2 || top2 < bottom1)
|| (right1 < left2 || right2 < left1)
-}
------------------------------------------------------------------------
main :: IO ()
main = do
args <- getArgs
let n = if null args then 100 else read (head args)
(results, passed) <- liftM unzip $ mapM (\(s,a) -> printf "%-25s: " s >> a n) tests
printf "Passed %d tests!\n" (sum passed)
when (not . and $ results) $ fail "Not all tests passed!"
where
tests =
[("StackSet invariants" , mytest prop_invariant)
,("empty: invariant" , mytest prop_empty_I)
,("empty is empty" , mytest prop_empty)
,("empty / current" , mytest prop_empty_current)
,("empty / member" , mytest prop_member_empty)
,("view : invariant" , mytest prop_view_I)
,("view sets current" , mytest prop_view_current)
,("view idempotent" , mytest prop_view_idem)
,("view reversible" , mytest prop_view_reversible)
-- ,("view / xinerama" , mytest prop_view_xinerama)
,("view is local" , mytest prop_view_local)
,("greedyView : invariant" , mytest prop_greedyView_I)
,("greedyView sets current" , mytest prop_greedyView_current)
,("greedyView idempotent" , mytest prop_greedyView_idem)
,("greedyView reversible" , mytest prop_greedyView_reversible)
,("greedyView is local" , mytest prop_greedyView_local)
--
-- ,("valid workspace xinerama", mytest prop_lookupWorkspace)
,("peek/member " , mytest prop_member_peek)
,("index/length" , mytest prop_index_length)
,("focus left : invariant", mytest prop_focusUp_I)
,("focus master : invariant", mytest prop_focusMaster_I)
,("focus right: invariant", mytest prop_focusDown_I)
,("focusWindow: invariant", mytest prop_focus_I)
,("focus left/master" , mytest prop_focus_left_master)
,("focus right/master" , mytest prop_focus_right_master)
,("focus master/master" , mytest prop_focus_master_master)
,("focusWindow master" , mytest prop_focusWindow_master)
,("focus left/right" , mytest prop_focus_left)
,("focus right/left" , mytest prop_focus_right)
,("focus all left " , mytest prop_focus_all_l)
,("focus all right " , mytest prop_focus_all_r)
,("focus down is local" , mytest prop_focus_down_local)
,("focus up is local" , mytest prop_focus_up_local)
,("focus master is local" , mytest prop_focus_master_local)
,("focus master idemp" , mytest prop_focusMaster_idem)
,("focusWindow is local", mytest prop_focusWindow_local)
,("focusWindow works" , mytest prop_focusWindow_works)
,("findTag" , mytest prop_findIndex)
,("allWindows/member" , mytest prop_allWindowsMember)
,("insert: invariant" , mytest prop_insertUp_I)
,("insert/new" , mytest prop_insert_empty)
,("insert is idempotent", mytest prop_insert_idem)
,("insert is reversible", mytest prop_insert_delete)
,("insert is local" , mytest prop_insert_local)
,("insert duplicates" , mytest prop_insert_duplicate)
,("insert/peek " , mytest prop_insert_peek)
,("insert/size" , mytest prop_size_insert)
,("delete: invariant" , mytest prop_delete_I)
,("delete/empty" , mytest prop_empty)
,("delete/member" , mytest prop_delete)
,("delete is reversible", mytest prop_delete_insert)
,("delete is local" , mytest prop_delete_local)
,("delete/focus" , mytest prop_delete_focus)
,("delete last/focus up", mytest prop_delete_focus_end)
,("delete ~last/focus down", mytest prop_delete_focus_not_end)
,("filter preserves order", mytest prop_filter_order)
,("swapMaster: invariant", mytest prop_swap_master_I)
,("swapUp: invariant" , mytest prop_swap_left_I)
,("swapDown: invariant", mytest prop_swap_right_I)
,("swapMaster id on focus", mytest prop_swap_master_focus)
,("swapUp id on focus", mytest prop_swap_left_focus)
,("swapDown id on focus", mytest prop_swap_right_focus)
,("swapMaster is idempotent", mytest prop_swap_master_idempotent)
,("swap all left " , mytest prop_swap_all_l)
,("swap all right " , mytest prop_swap_all_r)
,("swapMaster is local" , mytest prop_swap_master_local)
,("swapUp is local" , mytest prop_swap_left_local)
,("swapDown is local" , mytest prop_swap_right_local)
,("shift: invariant" , mytest prop_shift_I)
,("shift is reversible" , mytest prop_shift_reversible)
,("shiftWin: invariant" , mytest prop_shift_win_I)
,("shiftWin is shift on focus" , mytest prop_shift_win_focus)
,("shiftWin fix current" , mytest prop_shift_win_fix_current)
,("floating is reversible" , mytest prop_float_reversible)
,("screens includes current", mytest prop_screens)
,("differentiate works", mytest prop_differentiate)
,("lookupTagOnScreen", mytest prop_lookup_current)
,("lookupTagOnVisbleScreen", mytest prop_lookup_visible)
,("screens works", mytest prop_screens_works)
,("renaming works", mytest prop_rename1)
,("ensure works", mytest prop_ensure)
,("mapWorkspace id", mytest prop_mapWorkspaceId)
,("mapWorkspace inverse", mytest prop_mapWorkspaceInverse)
,("mapLayout id", mytest prop_mapLayoutId)
,("mapLayout inverse", mytest prop_mapLayoutInverse)
-- testing for failure:
,("abort fails", mytest prop_abort)
,("new fails with abort", mytest prop_new_abort)
,("shiftWin identity", mytest prop_shift_win_indentity)
-- renaming
{-
,("tile 1 window fullsize", mytest prop_tile_fullscreen)
,("tiles never overlap", mytest prop_tile_non_overlap)
-}
]
------------------------------------------------------------------------
--
-- QC driver
--
debug = False
mytest :: Testable a => a -> Int -> IO (Bool, Int)
mytest a n = mycheck defaultConfig
{ configMaxTest=n
, configEvery = \n args -> let s = show n in s ++ [ '\b' | _ <- s ] } a
-- , configEvery= \n args -> if debug then show n ++ ":\n" ++ unlines args else [] } a
mycheck :: Testable a => Config -> a -> IO (Bool, Int)
mycheck config a = do
rnd <- newStdGen
mytests config (evaluate a) rnd 0 0 []
mytests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO (Bool, Int)
mytests config gen rnd0 ntest nfail stamps
| ntest == configMaxTest config = done "OK," ntest stamps >> return (True, ntest)
| nfail == configMaxFail config = done "Arguments exhausted after" ntest stamps >> return (True, ntest)
| otherwise =
do putStr (configEvery config ntest (arguments result)) >> hFlush stdout
case ok result of
Nothing ->
mytests config gen rnd1 ntest (nfail+1) stamps
Just True ->
mytests config gen rnd1 (ntest+1) nfail (stamp result:stamps)
Just False ->
putStr ( "Falsifiable after "
++ show ntest
++ " tests:\n"
++ unlines (arguments result)
) >> hFlush stdout >> return (False, ntest)
where
result = generate (configSize config ntest) rnd2 gen
(rnd1,rnd2) = split rnd0
done :: String -> Int -> [[String]] -> IO ()
done mesg ntest stamps = putStr ( mesg ++ " " ++ show ntest ++ " tests" ++ table )
where
table = display
. map entry
. reverse
. sort
. map pairLength
. group
. sort
. filter (not . null)
$ stamps
display [] = ".\n"
display [x] = " (" ++ x ++ ").\n"
display xs = ".\n" ++ unlines (map (++ ".") xs)
pairLength xss@(xs:_) = (length xss, xs)
entry (n, xs) = percentage n ntest
++ " "
++ concat (intersperse ", " xs)
percentage n m = show ((100 * n) `div` m) ++ "%"
------------------------------------------------------------------------
instance Arbitrary Char where
arbitrary = choose ('a','z')
coarbitrary n = coarbitrary (ord n)
instance Random Word8 where
randomR = integralRandomR
random = randomR (minBound,maxBound)
instance Arbitrary Word8 where
arbitrary = choose (minBound,maxBound)
coarbitrary n = variant (fromIntegral ((fromIntegral n) `rem` 4))
instance Random Word64 where
randomR = integralRandomR
random = randomR (minBound,maxBound)
instance Arbitrary Word64 where
arbitrary = choose (minBound,maxBound)
coarbitrary n = variant (fromIntegral ((fromIntegral n) `rem` 4))
integralRandomR :: (Integral a, RandomGen g) => (a,a) -> g -> (a,g)
integralRandomR (a,b) g = case randomR (fromIntegral a :: Integer,
fromIntegral b :: Integer) g of
(x,g) -> (fromIntegral x, g)
instance Arbitrary Position where
arbitrary = do n <- arbitrary :: Gen Word8
return (fromIntegral n)
coarbitrary = undefined
instance Arbitrary Dimension where
arbitrary = do n <- arbitrary :: Gen Word8
return (fromIntegral n)
coarbitrary = undefined
instance Arbitrary Rectangle where
arbitrary = do
sx <- arbitrary
sy <- arbitrary
sw <- arbitrary
sh <- arbitrary
return $ Rectangle sx sy sw sh
coarbitrary = undefined
instance Arbitrary Rational where
arbitrary = do
n <- arbitrary
d' <- arbitrary
let d = if d' == 0 then 1 else d'
return (n % d)
coarbitrary = undefined
------------------------------------------------------------------------
-- QC 2
-- from QC2
-- | NonEmpty xs: guarantees that xs is non-empty.
newtype NonEmptyList a = NonEmpty [a]
deriving ( Eq, Ord, Show, Read )
instance Arbitrary a => Arbitrary (NonEmptyList a) where
arbitrary = NonEmpty `fmap` (arbitrary `suchThat` (not . null))
coarbitrary = undefined
newtype NonEmptyNubList a = NonEmptyNubList [a]
deriving ( Eq, Ord, Show, Read )
instance (Eq a, Arbitrary a) => Arbitrary (NonEmptyNubList a) where
arbitrary = NonEmptyNubList `fmap` ((liftM nub arbitrary) `suchThat` (not . null))
coarbitrary = undefined
type Positive a = NonZero (NonNegative a)
newtype NonZero a = NonZero a
deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )
instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonZero a) where
arbitrary = fmap NonZero $ arbitrary `suchThat` (/= 0)
coarbitrary = undefined
newtype NonNegative a = NonNegative a
deriving ( Eq, Ord, Num, Integral, Real, Enum, Show, Read )
instance (Num a, Ord a, Arbitrary a) => Arbitrary (NonNegative a) where
arbitrary =
frequency
[ (5, (NonNegative . abs) `fmap` arbitrary)
, (1, return 0)
]
coarbitrary = undefined
newtype EmptyStackSet = EmptyStackSet T deriving Show
instance Arbitrary EmptyStackSet where
arbitrary = do
(NonEmptyNubList ns) <- arbitrary
(NonEmptyNubList sds) <- arbitrary
l <- arbitrary
-- there cannot be more screens than workspaces:
return . EmptyStackSet . new l ns $ take (min (length ns) (length sds)) sds
-- | Generates a value that satisfies a predicate.
suchThat :: Gen a -> (a -> Bool) -> Gen a
gen `suchThat` p =
do mx <- gen `suchThatMaybe` p
case mx of
Just x -> return x
Nothing -> sized (\n -> resize (n+1) (gen `suchThat` p))
-- | Tries to generate a value that satisfies a predicate.
suchThatMaybe :: Gen a -> (a -> Bool) -> Gen (Maybe a)
gen `suchThatMaybe` p = sized (try 0 . max 1)
where
try _ 0 = return Nothing
try k n = do x <- resize (2*k+n) gen
if p x then return (Just x) else try (k+1) (n-1)
|