1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
//------------------------------------------------------------------
// qfixCAN128Board.h
//
// This file contains the class CAN128Board which represents the
// physical Can128Board with all its inputs and outputs.
//
// Copyright 2005-2006 by KTB mechatronics GmbH
// Author: Stefan Enderle, Florian Schrapp
//------------------------------------------------------------------
#ifndef qfixCAN128Board_h
#define qfixCAN128Board_h
#include "qfix.h"
static int speedMotor0 = 50;
static int speedMotor1 = 50;
class CAN128Board
{
public:
/** Constructor for the robot board class.
*/
CAN128Board();
/** Puts on LED i
*/
void ledOn(int i);
/** Puts off LED i
*/
void ledOff(int i);
/** Puts off all LEDs
*/
void ledsOff();
/** Puts LED i on if state is true, else off
*/
void led(int i, bool state);
/** Uses the four LEDs on the board to display the value i
* with 0 <= i <= 255
*/
void ledMeter(int i);
/** Puts the power output i on
*/
void powerOn(int i);
/** Puts the power output i off
*/
void powerOff(int i);
/** Puts the power output i on if state is true, else off
*/
void power(int i, bool state);
/** Checks the state of button i. If it is pressed, true is returned,
* else false.
*/
bool button(int i);
/** Sets motor i to the given speed. -255 <= speed <= 255
*/
void motor(int i, int speed);
/** Sets both motors to the given speed. -255 <= speed <= 255
*/
void motors(int speed0, int speed1);
/** Puts off both motors.
*/
void motorsOff();
/** returns the value of the analog port i. 0 <= value <= 255
*/
int analog(int i);
/** returns true if the digital port is logical high, else false.
*/
bool digital(int i);
};
// PWM routine //
SIGNAL (SIG_OVERFLOW0)
{
const int OFFSET=50; // motor does not work with very low ratio
static int counter=255+OFFSET;
if (speedMotor1==0) cbi(PORTB, 6); // enable1 = 0
else if (abs(speedMotor1)+OFFSET >= counter) sbi(PORTB, 6); // enable1 = 1
else cbi(PORTB, 6); // enable1 = 0
if (speedMotor0==0) cbi(PORTB, 7); // enable2 = 0
else if (abs(speedMotor0)+OFFSET >= counter) sbi(PORTB, 7); // enable2 = 1
else cbi(PORTB, 7); // enable2 = 0
if (counter==0) counter=255+OFFSET;
else counter--;
}
void initTimer()
{
TCCR0A=1; // timer 0 for interrupt
TIMSK1=1;
sei(); // enable interrupts
}
CAN128Board::CAN128Board()
{
// Port A: motors output
DDRA = 4+8+16+64; // all motors output
PORTA = 0; // clear all bits = motors off
// Port B: motors enable
DDRB = 64+128; // upper bits output
PORTB = 0; // clear bit 6 and 7 = motors off
// Port C: power output
DDRC = 255; // default direction port C: all bits output
PORTC = 0; // clear all bits: power on
// Port D: I2C //
DDRD = 0; // all bits input
PORTD = 1+2; // set bits 0,1 -> I2C pullUps
// Port E: leds + buttons
DDRE = 4+8+16+32; // pin 2-5 leds output; pin 6+7 input for buttons 0+1
PORTE |= 4+8+16+32; // set leds off
PORTE |= 64+128; // set pullups for buttons 0+1
// Port F: analog in + digital in
DDRF = 0; // all bits input
// Port G: buttons
DDRG = 0; // pin 3+4 input for buttons 2+3
PORTG |= 8+16; // set pullups for buttons 3+4
initTimer();
}
void CAN128Board::ledOn(int i)
{
if ((i<0) || (i>3)) return;
cbi(PORTE, i+2); // clear bit -> LED on
}
void CAN128Board::ledOff(int i)
{
if ((i<0) || (i>3)) return;
sbi(PORTE, i+2); // set bit -> LED off
}
void CAN128Board::ledsOff()
{
ledOff(0);
ledOff(1);
ledOff(2);
ledOff(3);
}
void CAN128Board::led(int i, bool state)
{
if (state) ledOn(i); else ledOff(i);
}
void CAN128Board::ledMeter(int i)
{
led(0, (i>50));
led(1, (i>100));
led(2, (i>150));
led(3, (i>200));
}
void CAN128Board::powerOn(int i)
{
if ((i<0) || (i>7)) return;
cbi(PORTC, i);
}
void CAN128Board::powerOff(int i)
{
if ((i<0) || (i>7)) return;
sbi(PORTC, i);
}
void CAN128Board::power(int i, bool state)
{
if (state) powerOn(i); else powerOff(i);
}
bool CAN128Board::button(int i)
{
if ((i<0) || (i>3)) return false;
else if (i==0 || i ==1){
return ((PINE & (64<<i)) == 0); //wenn pina=0 button gedrückt => 0&1=false, also 0==0 => true
}
else if (i==2 || i==3){
return ((PING & (2<<i)) == 0);
}
else return false;
}
void CAN128Board::motor(int i, int speed)
{
if ((i<0) || (i>1)) return;
if (i==1) {
speedMotor1 = speed;
if (speed==0) {
cbi(PORTA, 2); // input1 = 0
cbi(PORTA, 3); // input2 = 0
//cbi(PORTB, 6); // enable1 = 0
}
else if (speed>0) {
sbi(PORTA, 2); // input1 = 1
cbi(PORTA, 3); // input2 = 0
//sbi(PORTB, 6); // enable1 = 1
}
else {
cbi(PORTA, 2); // input1 = 0
sbi(PORTA, 3); // input2 = 1
}
}
if (i==0) {
speedMotor0 = speed;
if (speed==0) {
cbi(PORTA, 4); // input3 = 0
cbi(PORTA, 5); // input4 = 0
//cbi(PORTB, 7); // enable2 = 0
}
else if (speed>0){
sbi(PORTA, 4); // input3 = 1
cbi(PORTA, 5); // input4 = 0
//sbi(PORTB, 7); // enable2 = 1
}
else {
cbi(PORTA, 4); // input3 = 0
sbi(PORTA, 5); // input4 = 1
}
}
}
void CAN128Board::motors(int motor0, int motor1)
{
motor(0,motor0);
motor(1,motor1);
}
void CAN128Board::motorsOff()
{
motor(0,0);
motor(1,0);
}
// return 0-255 //
int CAN128Board::analog(int i)
{
if ((i<0) || (i>7)) return -1;
ADCSRA=128; // set A/D enable bit (ADEN)
ADMUX=i; // select analog input and start A/D
sbi(ADMUX, ADLAR); // left adjust -> we use only ADCH
sbi(ADCSRA, ADSC); // start conversion
while (ADCSRA & 64); // wait until ADSC is low again
int value = ADCH; // read 8 bit value fom ADCH
return value;
}
bool CAN128Board::digital(int i)
{
if ((i<0) || (i>7)) return false; // bad solution...
ADCSRA=0; // clear A/D enable bit (ADEN)
PORTF |= (1<<i); // set pullups for digital inputs
return (PINF & (1<<i)) ;
}
#endif
|