summaryrefslogtreecommitdiffstats
path: root/sysdep/unix/io.c
blob: a5e0522255255c5c6d9a143aba5c67b4e75d4370 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
/*
 *	BIRD Internet Routing Daemon -- Unix I/O
 *
 *	(c) 1998--2004 Martin Mares <mj@ucw.cz>
 *      (c) 2004       Ondrej Filip <feela@network.cz>
 *
 *	Can be freely distributed and used under the terms of the GNU GPL.
 */

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
#include <sys/un.h>
#include <unistd.h>
#include <errno.h>

#include "nest/bird.h"
#include "lib/lists.h"
#include "lib/resource.h"
#include "lib/timer.h"
#include "lib/socket.h"
#include "lib/event.h"
#include "lib/string.h"
#include "nest/iface.h"

#include "lib/unix.h"
#include "lib/sysio.h"

/* Maximum number of calls of rx/tx handler for one socket in one
 * select iteration. Should be small enough to not monopolize CPU by
 * one protocol instance.
 */
#define MAX_STEPS 4

/*
 *	Tracked Files
 */

struct rfile {
  resource r;
  FILE *f;
};

static void
rf_free(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  fclose(a->f);
}

static void
rf_dump(resource *r)
{
  struct rfile *a = (struct rfile *) r;

  debug("(FILE *%p)\n", a->f);
}

static struct resclass rf_class = {
  "FILE",
  sizeof(struct rfile),
  rf_free,
  rf_dump
};

void *
tracked_fopen(pool *p, char *name, char *mode)
{
  FILE *f = fopen(name, mode);

  if (f)
    {
      struct rfile *r = ralloc(p, &rf_class);
      r->f = f;
    }
  return f;
}

/**
 * DOC: Timers
 *
 * Timers are resources which represent a wish of a module to call
 * a function at the specified time. The platform dependent code
 * doesn't guarantee exact timing, only that a timer function
 * won't be called before the requested time.
 *
 * In BIRD, time is represented by values of the &bird_clock_t type
 * which are integral numbers interpreted as a relative number of seconds since
 * some fixed time point in past. The current time can be read
 * from variable @now with reasonable accuracy and is monotonic. There is also
 * a current 'absolute' time in variable @now_real reported by OS.
 *
 * Each timer is described by a &timer structure containing a pointer
 * to the handler function (@hook), data private to this function (@data),
 * time the function should be called at (@expires, 0 for inactive timers),
 * for the other fields see |timer.h|.
 */

#define NEAR_TIMER_LIMIT 4

static list near_timers, far_timers;
static bird_clock_t first_far_timer = TIME_INFINITY;

bird_clock_t now, now_real;

static void
update_times_plain(void)
{
  bird_clock_t new_time = time(NULL);
  int delta = new_time - now_real;

  if ((delta >= 0) && (delta < 60))
    now += delta;
  else if (now_real != 0)
   log(L_WARN "Time jump, delta %d s", delta);

  now_real = new_time;
}

static void
update_times_gettime(void)
{
  struct timespec ts;
  int rv;

  rv = clock_gettime(CLOCK_MONOTONIC, &ts);
  if (rv != 0)
    die("clock_gettime: %m");

  if (ts.tv_sec != now) {
    if (ts.tv_sec < now)
      log(L_ERR "Monotonic timer is broken");

    now = ts.tv_sec;
    now_real = time(NULL);
  }
}

static int clock_monotonic_available;

static inline void
update_times(void)
{
  if (clock_monotonic_available)
    update_times_gettime();
  else
    update_times_plain();
}

static inline void
init_times(void)
{
 struct timespec ts;
 clock_monotonic_available = (clock_gettime(CLOCK_MONOTONIC, &ts) == 0);
 if (!clock_monotonic_available)
   log(L_WARN "Monotonic timer is missing");
}


static void
tm_free(resource *r)
{
  timer *t = (timer *) r;

  tm_stop(t);
}

static void
tm_dump(resource *r)
{
  timer *t = (timer *) r;

  debug("(code %p, data %p, ", t->hook, t->data);
  if (t->randomize)
    debug("rand %d, ", t->randomize);
  if (t->recurrent)
    debug("recur %d, ", t->recurrent);
  if (t->expires)
    debug("expires in %d sec)\n", t->expires - now);
  else
    debug("inactive)\n");
}

static struct resclass tm_class = {
  "Timer",
  sizeof(timer),
  tm_free,
  tm_dump
};

/**
 * tm_new - create a timer
 * @p: pool
 *
 * This function creates a new timer resource and returns
 * a pointer to it. To use the timer, you need to fill in
 * the structure fields and call tm_start() to start timing.
 */
timer *
tm_new(pool *p)
{
  timer *t = ralloc(p, &tm_class);
  t->hook = NULL;
  t->data = NULL;
  t->randomize = 0;
  t->expires = 0;
  return t;
}

static inline void
tm_insert_near(timer *t)
{
  node *n = HEAD(near_timers);

  while (n->next && (SKIP_BACK(timer, n, n)->expires < t->expires))
    n = n->next;
  insert_node(&t->n, n->prev);
}

/**
 * tm_start - start a timer
 * @t: timer
 * @after: number of seconds the timer should be run after
 *
 * This function schedules the hook function of the timer to
 * be called after @after seconds. If the timer has been already
 * started, it's @expire time is replaced by the new value.
 *
 * You can have set the @randomize field of @t, the timeout
 * will be increased by a random number of seconds chosen
 * uniformly from range 0 .. @randomize.
 *
 * You can call tm_start() from the handler function of the timer
 * to request another run of the timer. Also, you can set the @recurrent
 * field to have the timer re-added automatically with the same timeout.
 */
void
tm_start(timer *t, unsigned after)
{
  bird_clock_t when;

  if (t->randomize)
    after += random() % (t->randomize + 1);
  when = now + after;
  if (t->expires == when)
    return;
  if (t->expires)
    rem_node(&t->n);
  t->expires = when;
  if (after <= NEAR_TIMER_LIMIT)
    tm_insert_near(t);
  else
    {
      if (!first_far_timer || first_far_timer > when)
	first_far_timer = when;
      add_tail(&far_timers, &t->n);
    }
}

/**
 * tm_stop - stop a timer
 * @t: timer
 *
 * This function stops a timer. If the timer is already stopped,
 * nothing happens.
 */
void
tm_stop(timer *t)
{
  if (t->expires)
    {
      rem_node(&t->n);
      t->expires = 0;
    }
}

static void
tm_dump_them(char *name, list *l)
{
  node *n;
  timer *t;

  debug("%s timers:\n", name);
  WALK_LIST(n, *l)
    {
      t = SKIP_BACK(timer, n, n);
      debug("%p ", t);
      tm_dump(&t->r);
    }
  debug("\n");
}

void
tm_dump_all(void)
{
  tm_dump_them("Near", &near_timers);
  tm_dump_them("Far", &far_timers);
}

static inline time_t
tm_first_shot(void)
{
  time_t x = first_far_timer;

  if (!EMPTY_LIST(near_timers))
    {
      timer *t = SKIP_BACK(timer, n, HEAD(near_timers));
      if (t->expires < x)
	x = t->expires;
    }
  return x;
}

static void
tm_shot(void)
{
  timer *t;
  node *n, *m;

  if (first_far_timer <= now)
    {
      bird_clock_t limit = now + NEAR_TIMER_LIMIT;
      first_far_timer = TIME_INFINITY;
      n = HEAD(far_timers);
      while (m = n->next)
	{
	  t = SKIP_BACK(timer, n, n);
	  if (t->expires <= limit)
	    {
	      rem_node(n);
	      tm_insert_near(t);
	    }
	  else if (t->expires < first_far_timer)
	    first_far_timer = t->expires;
	  n = m;
	}
    }
  while ((n = HEAD(near_timers)) -> next)
    {
      int delay;
      t = SKIP_BACK(timer, n, n);
      if (t->expires > now)
	break;
      rem_node(n);
      delay = t->expires - now;
      t->expires = 0;
      if (t->recurrent)
	{
	  int i = t->recurrent - delay;
	  if (i < 0)
	    i = 0;
	  tm_start(t, i);
	}
      t->hook(t);
    }
}

/**
 * tm_parse_datetime - parse a date and time
 * @x: datetime string
 *
 * tm_parse_datetime() takes a textual representation of
 * a date and time (dd-mm-yyyy hh:mm:ss)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
bird_clock_t
tm_parse_datetime(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d %d:%d:%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &n) != 6 || x[n])
    return tm_parse_date(x);
  tm.tm_mon--;
  tm.tm_year -= 1900;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}
/**
 * tm_parse_date - parse a date
 * @x: date string
 *
 * tm_parse_date() takes a textual representation of a date (dd-mm-yyyy)
 * and converts it to the corresponding value of type &bird_clock_t.
 */
bird_clock_t
tm_parse_date(char *x)
{
  struct tm tm;
  int n;
  time_t t;

  if (sscanf(x, "%d-%d-%d%n", &tm.tm_mday, &tm.tm_mon, &tm.tm_year, &n) != 3 || x[n])
    return 0;
  tm.tm_mon--;
  tm.tm_year -= 1900;
  tm.tm_hour = tm.tm_min = tm.tm_sec = 0;
  t = mktime(&tm);
  if (t == (time_t) -1)
    return 0;
  return t;
}

/**
 * tm_format_date - convert date to textual representation
 * @x: destination buffer of size %TM_DATE_BUFFER_SIZE
 * @t: time
 *
 * This function formats the given relative time value @t to a textual
 * date representation (dd-mm-yyyy) in real time..
 */
void
tm_format_date(char *x, bird_clock_t t)
{
  struct tm *tm;

  tm = localtime(&t);
  bsprintf(x, "%02d-%02d-%04d", tm->tm_mday, tm->tm_mon+1, tm->tm_year+1900);
}

/**
 * tm_format_datetime - convert date and time to textual representation
 * @x: destination buffer of size %TM_DATETIME_BUFFER_SIZE
 * @t: time
 *
 * This function formats the given relative time value @t to a textual
 * date/time representation (dd-mm-yyyy hh:mm:ss) in real time.
 */
void
tm_format_datetime(char *x, bird_clock_t t)
{
  struct tm *tm;
  bird_clock_t delta = now - t;
  t = now_real - delta;
  tm = localtime(&t);
  if (strftime(x, TM_DATETIME_BUFFER_SIZE, "%d-%m-%Y %H:%M:%S", tm) == TM_DATETIME_BUFFER_SIZE)
    strcpy(x, "<too-long>");
}

/**
 * tm_format_reltime - convert date and time to relative textual representation
 * @x: destination buffer of size %TM_RELTIME_BUFFER_SIZE
 * @t: time
 *
 * This function formats the given relative time value @t to a short
 * textual representation in real time, relative to the current time.
 */
void
tm_format_reltime(char *x, bird_clock_t t)
{
  struct tm *tm;
  static char *month_names[12] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };

  bird_clock_t delta = now - t;
  t = now_real - delta;
  tm = localtime(&t);
  if (delta < 20*3600)
    bsprintf(x, "%02d:%02d", tm->tm_hour, tm->tm_min);
  else if (delta < 360*86400)
    bsprintf(x, "%s%02d", month_names[tm->tm_mon], tm->tm_mday);
  else
    bsprintf(x, "%d", tm->tm_year+1900);
}

/**
 * DOC: Sockets
 *
 * Socket resources represent network connections. Their data structure (&socket)
 * contains a lot of fields defining the exact type of the socket, the local and
 * remote addresses and ports, pointers to socket buffers and finally pointers to
 * hook functions to be called when new data have arrived to the receive buffer
 * (@rx_hook), when the contents of the transmit buffer have been transmitted
 * (@tx_hook) and when an error or connection close occurs (@err_hook).
 *
 * Freeing of sockets from inside socket hooks is perfectly safe.
 */

#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif

#ifndef SOL_IPV6
#define SOL_IPV6 IPPROTO_IPV6
#endif

#ifndef IPV6_ADD_MEMBERSHIP
#define IPV6_ADD_MEMBERSHIP IP_ADD_MEMBERSHIP
#endif

static list sock_list;
static struct birdsock *current_sock;
static int sock_recalc_fdsets_p;

static inline sock *
sk_next(sock *s)
{
  if (!s->n.next->next)
    return NULL;
  else
    return SKIP_BACK(sock, n, s->n.next);
}

static void
sk_alloc_bufs(sock *s)
{
  if (!s->rbuf && s->rbsize)
    s->rbuf = s->rbuf_alloc = xmalloc(s->rbsize);
  s->rpos = s->rbuf;
  if (!s->tbuf && s->tbsize)
    s->tbuf = s->tbuf_alloc = xmalloc(s->tbsize);
  s->tpos = s->ttx = s->tbuf;
}

static void
sk_free_bufs(sock *s)
{
  if (s->rbuf_alloc)
    {
      xfree(s->rbuf_alloc);
      s->rbuf = s->rbuf_alloc = NULL;
    }
  if (s->tbuf_alloc)
    {
      xfree(s->tbuf_alloc);
      s->tbuf = s->tbuf_alloc = NULL;
    }
}

static void
sk_free(resource *r)
{
  sock *s = (sock *) r;

  sk_free_bufs(s);
  if (s->fd >= 0)
    {
      close(s->fd);
      if (s == current_sock)
	current_sock = sk_next(s);
      rem_node(&s->n);
      sock_recalc_fdsets_p = 1;
    }
}

void
sk_reallocate(sock *s)
{
  sk_free_bufs(s);
  sk_alloc_bufs(s);
}

static void
sk_dump(resource *r)
{
  sock *s = (sock *) r;
  static char *sk_type_names[] = { "TCP<", "TCP>", "TCP", "UDP", "UDP/MC", "IP", "IP/MC", "MAGIC", "UNIX<", "UNIX", "DEL!" };

  debug("(%s, ud=%p, sa=%08x, sp=%d, da=%08x, dp=%d, tos=%d, ttl=%d, if=%s)\n",
	sk_type_names[s->type],
	s->data,
	s->saddr,
	s->sport,
	s->daddr,
	s->dport,
	s->tos,
	s->ttl,
	s->iface ? s->iface->name : "none");
}

static struct resclass sk_class = {
  "Socket",
  sizeof(sock),
  sk_free,
  sk_dump
};

/**
 * sk_new - create a socket
 * @p: pool
 *
 * This function creates a new socket resource. If you want to use it,
 * you need to fill in all the required fields of the structure and
 * call sk_open() to do the actual opening of the socket.
 */
sock *
sk_new(pool *p)
{
  sock *s = ralloc(p, &sk_class);
  s->pool = p;
  s->data = NULL;
  s->saddr = s->daddr = IPA_NONE;
  s->sport = s->dport = 0;
  s->tos = s->ttl = -1;
  s->flags = 0;
  s->iface = NULL;
  s->rbuf = NULL;
  s->rx_hook = NULL;
  s->rbsize = 0;
  s->tbuf = NULL;
  s->tx_hook = NULL;
  s->tbsize = 0;
  s->err_hook = NULL;
  s->fd = -1;
  s->rbuf_alloc = s->tbuf_alloc = NULL;
  s->password = NULL;
  return s;
}

static void
sk_insert(sock *s)
{
  add_tail(&sock_list, &s->n);
  sock_recalc_fdsets_p = 1;
}

#ifdef IPV6

void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
  memset (sa, 0, sizeof (struct sockaddr_in6));
  sa->sin6_family = AF_INET6;
  sa->sin6_port = htons(port);
  sa->sin6_flowinfo = 0;
#ifdef HAVE_SIN_LEN
  sa->sin6_len = sizeof(struct sockaddr_in6);
#endif
  set_inaddr(&sa->sin6_addr, a);
}

void
get_sockaddr(struct sockaddr_in6 *sa, ip_addr *a, unsigned *port, int check)
{
  if (check && sa->sin6_family != AF_INET6)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin6_family);
  if (port)
    *port = ntohs(sa->sin6_port);
  memcpy(a, &sa->sin6_addr, sizeof(*a));
  ipa_ntoh(*a);
}

#else

void
fill_in_sockaddr(sockaddr *sa, ip_addr a, unsigned port)
{
  memset (sa, 0, sizeof (struct sockaddr_in));
  sa->sin_family = AF_INET;
  sa->sin_port = htons(port);
#ifdef HAVE_SIN_LEN
  sa->sin_len = sizeof(struct sockaddr_in);
#endif
  set_inaddr(&sa->sin_addr, a);
}

void
get_sockaddr(struct sockaddr_in *sa, ip_addr *a, unsigned *port, int check)
{
  if (check && sa->sin_family != AF_INET)
    bug("get_sockaddr called for wrong address family (%d)", sa->sin_family);
  if (port)
    *port = ntohs(sa->sin_port);
  memcpy(a, &sa->sin_addr.s_addr, sizeof(*a));
  ipa_ntoh(*a);
}

#endif

static char *
sk_set_ttl_int(sock *s)
{
  int one = 1;
#ifdef IPV6
  if (s->type != SK_UDP_MC && s->type != SK_IP_MC &&
      setsockopt(s->fd, SOL_IPV6, IPV6_UNICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
    return "IPV6_UNICAST_HOPS";
#else
  if (setsockopt(s->fd, SOL_IP, IP_TTL, &s->ttl, sizeof(s->ttl)) < 0)
    return "IP_TTL";
#ifdef CONFIG_UNIX_DONTROUTE
  if (s->ttl == 1 && setsockopt(s->fd, SOL_SOCKET, SO_DONTROUTE, &one, sizeof(one)) < 0)
    return "SO_DONTROUTE";
#endif 
#endif
  return NULL;
}

#define ERR(x) do { err = x; goto bad; } while(0)
#define WARN(x) log(L_WARN "sk_setup: %s: %m", x)

static char *
sk_setup(sock *s)
{
  int fd = s->fd;
  char *err;

  if (fcntl(fd, F_SETFL, O_NONBLOCK) < 0)
    ERR("fcntl(O_NONBLOCK)");
  if (s->type == SK_UNIX)
    return NULL;
#ifndef IPV6
  if ((s->tos >= 0) && setsockopt(fd, SOL_IP, IP_TOS, &s->tos, sizeof(s->tos)) < 0)
    WARN("IP_TOS");
#endif

#ifdef IPV6
  int v = 1;
  if ((s->flags & SKF_V6ONLY) && setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &v, sizeof(v)) < 0)
    WARN("IPV6_V6ONLY");
#endif

  if (s->ttl >= 0)
    err = sk_set_ttl_int(s);
  else
    err = NULL;

bad:
  return err;
}

/**
 * sk_set_ttl - set TTL for given socket.
 * @s: socket
 * @ttl: TTL value
 *
 * Set TTL for already opened connections when TTL was not set before.
 * Useful for accepted connections when different ones should have 
 * different TTL.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_ttl(sock *s, int ttl)
{
  char *err;

  s->ttl = ttl;
  if (err = sk_set_ttl_int(s))
    log(L_ERR "sk_set_ttl: %s: %m", err);

  return (err ? -1 : 0);
}


/**
 * sk_set_md5_auth - add / remove MD5 security association for given socket.
 * @s: socket
 * @a: IP address of the other side
 * @passwd: password used for MD5 authentication
 *
 * In TCP MD5 handling code in kernel, there is a set of pairs
 * (address, password) used to choose password according to
 * address of the other side. This function is useful for
 * listening socket, for active sockets it is enough to set
 * s->password field.
 *
 * When called with passwd != NULL, the new pair is added,
 * When called with passwd == NULL, the existing pair is removed.
 *
 * Result: 0 for success, -1 for an error.
 */

int
sk_set_md5_auth(sock *s, ip_addr a, char *passwd)
{
  sockaddr sa;
  fill_in_sockaddr(&sa, a, 0);
  return sk_set_md5_auth_int(s, &sa, passwd);
}


static void
sk_tcp_connected(sock *s)
{
  s->type = SK_TCP;
  sk_alloc_bufs(s);
  s->tx_hook(s);
}

static int
sk_passive_connected(sock *s, struct sockaddr *sa, int al, int type)
{
  int fd = accept(s->fd, sa, &al);
  if (fd >= 0)
    {
      sock *t = sk_new(s->pool);
      char *err;
      t->type = type;
      t->fd = fd;
      t->ttl = s->ttl;
      t->tos = s->tos;
      t->rbsize = s->rbsize;
      t->tbsize = s->tbsize;
      if (type == SK_TCP)
	get_sockaddr((sockaddr *) sa, &t->daddr, &t->dport, 1);
      sk_insert(t);
      if (err = sk_setup(t))
	{
	  log(L_ERR "Incoming connection: %s: %m", err);
	  rfree(t);
	  return 1;
	}
      sk_alloc_bufs(t);
      s->rx_hook(t, 0);
      return 1;
    }
  else if (errno != EINTR && errno != EAGAIN)
    {
      log(L_ERR "accept: %m");
      s->err_hook(s, errno);
    }
  return 0;
}

/**
 * sk_open - open a socket
 * @s: socket
 *
 * This function takes a socket resource created by sk_new() and
 * initialized by the user and binds a corresponding network connection
 * to it.
 *
 * Result: 0 for success, -1 for an error.
 */
int
sk_open(sock *s)
{
  int fd;
  sockaddr sa;
  int one = 1;
  int type = s->type;
  int has_src = ipa_nonzero(s->saddr) || s->sport;
  char *err;

  switch (type)
    {
    case SK_TCP_ACTIVE:
      s->ttx = "";			/* Force s->ttx != s->tpos */
      /* Fall thru */
    case SK_TCP_PASSIVE:
      fd = socket(BIRD_PF, SOCK_STREAM, IPPROTO_TCP);
      break;
    case SK_UDP:
    case SK_UDP_MC:
      fd = socket(BIRD_PF, SOCK_DGRAM, IPPROTO_UDP);
      break;
    case SK_IP:
    case SK_IP_MC:
      fd = socket(BIRD_PF, SOCK_RAW, s->dport);
      break;
    case SK_MAGIC:
      fd = s->fd;
      break;
    default:
      bug("sk_open() called for invalid sock type %d", type);
    }
  if (fd < 0)
    die("sk_open: socket: %m");
  s->fd = fd;

  if (err = sk_setup(s))
    goto bad;

  switch (type)
    {
    case SK_UDP:
    case SK_IP:
      if (s->iface)			/* It's a broadcast socket */
#ifdef IPV6
	bug("IPv6 has no broadcasts");
#else
	if (setsockopt(fd, SOL_SOCKET, SO_BROADCAST, &one, sizeof(one)) < 0)
	  ERR("SO_BROADCAST");
#endif
      break;
    case SK_UDP_MC:
    case SK_IP_MC:
      {
#ifdef IPV6
	/* Fortunately, IPv6 socket interface is recent enough and therefore standardized */
	ASSERT(s->iface && s->iface->addr);
	if (ipa_nonzero(s->daddr))
	  {
	    int t = s->iface->index;
	    int zero = 0;
	    if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_HOPS, &s->ttl, sizeof(s->ttl)) < 0)
	      ERR("IPV6_MULTICAST_HOPS");
	    if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_LOOP, &zero, sizeof(zero)) < 0)
	      ERR("IPV6_MULTICAST_LOOP");
	    if (setsockopt(fd, SOL_IPV6, IPV6_MULTICAST_IF, &t, sizeof(t)) < 0)
	      ERR("IPV6_MULTICAST_IF");
	  }
	if (has_src)
	  {
	    struct ipv6_mreq mreq;
	    set_inaddr(&mreq.ipv6mr_multiaddr, s->daddr);
#ifdef CONFIG_IPV6_GLIBC_20
	    mreq.ipv6mr_ifindex = s->iface->index;
#else
	    mreq.ipv6mr_interface = s->iface->index;
#endif /* CONFIG_IPV6_GLIBC_20 */
	    if (setsockopt(fd, SOL_IPV6, IPV6_ADD_MEMBERSHIP, &mreq, sizeof(mreq)) < 0)
	      ERR("IPV6_ADD_MEMBERSHIP");
	  }
#else
	/* With IPv4 there are zillions of different socket interface variants. Ugh. */
	ASSERT(s->iface && s->iface->addr);
	if (err = sysio_mcast_join(s))
	  goto bad;
#endif /* IPV6 */
      break;
      }
    }
  if (has_src)
    {
      int port;

      if (type == SK_IP || type == SK_IP_MC)
	port = 0;
      else
	{
	  port = s->sport;
	  if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
	    ERR("SO_REUSEADDR");
	}
      fill_in_sockaddr(&sa, s->saddr, port);
#ifdef CONFIG_SKIP_MC_BIND
      if ((type != SK_UDP_MC) && (type != SK_IP_MC) &&
	  bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
#else
      if (bind(fd, (struct sockaddr *) &sa, sizeof(sa)) < 0)
#endif
	ERR("bind");
    }
  fill_in_sockaddr(&sa, s->daddr, s->dport);

  if (s->password)
    {
      int rv = sk_set_md5_auth_int(s, &sa, s->password);
      if (rv < 0)
	goto bad_no_log;
    }

  switch (type)
    {
    case SK_TCP_ACTIVE:
      if (connect(fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0)
	sk_tcp_connected(s);
      else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS &&
	       errno != ECONNREFUSED && errno != EHOSTUNREACH)
	ERR("connect");
      break;
    case SK_TCP_PASSIVE:
      if (listen(fd, 8))
	ERR("listen");
      break;
    case SK_MAGIC:
      break;
    default:
      sk_alloc_bufs(s);
#ifdef IPV6
#ifdef IPV6_MTU_DISCOVER
      {
	int dont = IPV6_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IPV6, IPV6_MTU_DISCOVER, &dont, sizeof(dont)) < 0)
	  ERR("IPV6_MTU_DISCOVER");
      }
#endif
#else
#ifdef IP_PMTUDISC
      {
	int dont = IP_PMTUDISC_DONT;
	if (setsockopt(fd, SOL_IP, IP_PMTUDISC, &dont, sizeof(dont)) < 0)
	  ERR("IP_PMTUDISC");
      }
#endif
#endif
    }

  sk_insert(s);
  return 0;

bad:
  log(L_ERR "sk_open: %s: %m", err);
bad_no_log:
  close(fd);
  s->fd = -1;
  return -1;
}

int
sk_open_unix(sock *s, char *name)
{
  int fd;
  struct sockaddr_un sa;
  char *err;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);
  if (fd < 0)
    die("sk_open_unix: socket: %m");
  s->fd = fd;
  if (err = sk_setup(s))
    goto bad;
  unlink(name);
 
  if (strlen(name) >= sizeof(sa.sun_path))
    die("sk_open_unix: path too long");

  sa.sun_family = AF_UNIX;
  strcpy(sa.sun_path, name);
  if (bind(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) < 0)
    ERR("bind");
  if (listen(fd, 8))
    ERR("listen");
  sk_insert(s);
  return 0;

bad:
  log(L_ERR "sk_open_unix: %s: %m", err);
  close(fd);
  s->fd = -1;
  return -1;
}

static int
sk_maybe_write(sock *s)
{
  int e;

  switch (s->type)
    {
    case SK_TCP:
    case SK_MAGIC:
    case SK_UNIX:
      while (s->ttx != s->tpos)
	{
	  e = write(s->fd, s->ttx, s->tpos - s->ttx);
	  if (e < 0)
	    {
	      if (errno != EINTR && errno != EAGAIN)
		{
                  s->ttx = s->tpos;	/* empty tx buffer */
		  s->err_hook(s, errno);
		  return -1;
		}
	      return 0;
	    }
	  s->ttx += e;
	}
      s->ttx = s->tpos = s->tbuf;
      return 1;
    case SK_UDP:
    case SK_UDP_MC:
    case SK_IP:
    case SK_IP_MC:
      {
	sockaddr sa;

	if (s->tbuf == s->tpos)
	  return 1;
	fill_in_sockaddr(&sa, s->faddr, s->fport);

	e = sendto(s->fd, s->tbuf, s->tpos - s->tbuf, 0, (struct sockaddr *) &sa, sizeof(sa));
	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
	      {
                s->ttx = s->tpos;	/* empty tx buffer */
		s->err_hook(s, errno);
		return -1;
	      }
	    return 0;
	  }
	s->tpos = s->tbuf;
	return 1;
      }
    default:
      bug("sk_maybe_write: unknown socket type %d", s->type);
    }
}

/**
 * sk_send - send data to a socket
 * @s: socket
 * @len: number of bytes to send
 *
 * This function sends @len bytes of data prepared in the
 * transmit buffer of the socket @s to the network connection.
 * If the packet can be sent immediately, it does so and returns
 * 1, else it queues the packet for later processing, returns 0
 * and calls the @tx_hook of the socket when the tranmission
 * takes place.
 */
int
sk_send(sock *s, unsigned len)
{
  s->faddr = s->daddr;
  s->fport = s->dport;
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

/**
 * sk_send_to - send data to a specific destination
 * @s: socket
 * @len: number of bytes to send
 * @addr: IP address to send the packet to
 * @port: port to send the packet to
 *
 * This is a sk_send() replacement for connection-less packet sockets
 * which allows destination of the packet to be chosen dynamically.
 */
int
sk_send_to(sock *s, unsigned len, ip_addr addr, unsigned port)
{
  s->faddr = addr;
  s->fport = port;
  s->ttx = s->tbuf;
  s->tpos = s->tbuf + len;
  return sk_maybe_write(s);
}

static int
sk_read(sock *s)
{
  switch (s->type)
    {
    case SK_TCP_PASSIVE:
      {
	sockaddr sa;
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_TCP);
      }
    case SK_UNIX_PASSIVE:
      {
	struct sockaddr_un sa;
	return sk_passive_connected(s, (struct sockaddr *) &sa, sizeof(sa), SK_UNIX);
      }
    case SK_TCP:
    case SK_UNIX:
      {
	int c = read(s->fd, s->rpos, s->rbuf + s->rbsize - s->rpos);

	if (c < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
	      s->err_hook(s, errno);
	  }
	else if (!c)
	  s->err_hook(s, 0);
	else
	  {
	    s->rpos += c;
	    if (s->rx_hook(s, s->rpos - s->rbuf))
	      {
		/* We need to be careful since the socket could have been deleted by the hook */
		if (current_sock == s)
		  s->rpos = s->rbuf;
	      }
	    return 1;
	  }
	return 0;
      }
    case SK_MAGIC:
      return s->rx_hook(s, 0);
    default:
      {
	sockaddr sa;
	int al = sizeof(sa);
	int e = recvfrom(s->fd, s->rbuf, s->rbsize, 0, (struct sockaddr *) &sa, &al);

	if (e < 0)
	  {
	    if (errno != EINTR && errno != EAGAIN)
	      s->err_hook(s, errno);
	    return 0;
	  }
	s->rpos = s->rbuf + e;
	get_sockaddr(&sa, &s->faddr, &s->fport, 1);
	s->rx_hook(s, e);
	return 1;
      }
    }
}

static int
sk_write(sock *s)
{
  switch (s->type)
    {
    case SK_TCP_ACTIVE:
      {
	sockaddr sa;
	fill_in_sockaddr(&sa, s->daddr, s->dport);
	if (connect(s->fd, (struct sockaddr *) &sa, sizeof(sa)) >= 0 || errno == EISCONN)
	  sk_tcp_connected(s);
	else if (errno != EINTR && errno != EAGAIN && errno != EINPROGRESS)
	  s->err_hook(s, errno);
	return 0;
      }
    default:
      if (s->ttx != s->tpos && sk_maybe_write(s) > 0)
	{
	  s->tx_hook(s);
	  return 1;
	}
      return 0;
    }
}

void
sk_dump_all(void)
{
  node *n;
  sock *s;

  debug("Open sockets:\n");
  WALK_LIST(n, sock_list)
    {
      s = SKIP_BACK(sock, n, n);
      debug("%p ", s);
      sk_dump(&s->r);
    }
  debug("\n");
}

#undef ERR
#undef WARN

/*
 *	Main I/O Loop
 */

volatile int async_config_flag;		/* Asynchronous reconfiguration/dump scheduled */
volatile int async_dump_flag;

void
io_init(void)
{
  init_list(&near_timers);
  init_list(&far_timers);
  init_list(&sock_list);
  init_list(&global_event_list);
  krt_io_init();
  init_times();
  update_times();
  srandom((int) now_real);
}

void
io_loop(void)
{
  fd_set rd, wr;
  struct timeval timo;
  time_t tout;
  int hi, events;
  sock *s;
  node *n;

  sock_recalc_fdsets_p = 1;
  for(;;)
    {
      events = ev_run_list(&global_event_list);
      update_times();
      tout = tm_first_shot();
      if (tout <= now)
	{
	  tm_shot();
	  continue;
	}
      timo.tv_sec = events ? 0 : tout - now;
      timo.tv_usec = 0;

      if (sock_recalc_fdsets_p)
	{
	  sock_recalc_fdsets_p = 0;
	  FD_ZERO(&rd);
	  FD_ZERO(&wr);
	}

      hi = 0;
      WALK_LIST(n, sock_list)
	{
	  s = SKIP_BACK(sock, n, n);
	  if (s->rx_hook)
	    {
	      FD_SET(s->fd, &rd);
	      if (s->fd > hi)
		hi = s->fd;
	    }
	  else
	    FD_CLR(s->fd, &rd);
	  if (s->tx_hook && s->ttx != s->tpos)
	    {
	      FD_SET(s->fd, &wr);
	      if (s->fd > hi)
		hi = s->fd;
	    }
	  else
	    FD_CLR(s->fd, &wr);
	}

      /*
       * Yes, this is racy. But even if the signal comes before this test
       * and entering select(), it gets caught on the next timer tick.
       */

      if (async_config_flag)
	{
	  async_config();
	  async_config_flag = 0;
	  continue;
	}
      if (async_dump_flag)
	{
	  async_dump();
	  async_dump_flag = 0;
	  continue;
	}
      if (async_shutdown_flag)
	{
	  async_shutdown();
	  async_shutdown_flag = 0;
	  continue;
	}

      /* And finally enter select() to find active sockets */

      hi = select(hi+1, &rd, &wr, NULL, &timo);
      if (hi < 0)
	{
	  if (errno == EINTR || errno == EAGAIN)
	    continue;
	  die("select: %m");
	}
      if (hi)
	{
	  current_sock = SKIP_BACK(sock, n, HEAD(sock_list));	/* guaranteed to be non-empty */
	  while (current_sock)
	    {
	      sock *s = current_sock;
	      int e;
	      int steps = MAX_STEPS;
	      if (FD_ISSET(s->fd, &rd) && s->rx_hook)
		do
		  {
		    steps--;
		    e = sk_read(s);
		    if (s != current_sock)
		      goto next;
		  }
		while (e && s->rx_hook && steps);

	      steps = MAX_STEPS;
	      if (FD_ISSET(s->fd, &wr))
		do
		  {
		    steps--;
		    e = sk_write(s);
		    if (s != current_sock)
		      goto next;
		  }
		while (e && steps);
	      current_sock = sk_next(s);
	    next: ;
	    }
	}
    }
}

void
test_old_bird(char *path)
{
  int fd;
  struct sockaddr_un sa;

  fd = socket(AF_UNIX, SOCK_STREAM, 0);

  if (fd < 0)
    die("Cannot create socket: %m");
  bzero(&sa, sizeof(sa));
  sa.sun_family = AF_UNIX;
  strcpy(sa.sun_path, path);
  if (connect(fd, (struct sockaddr *) &sa, SUN_LEN(&sa)) == 0)
    die("I found another BIRD running.");
  close(fd);
}